鉅大鋰電 | 點擊量:0次 | 2019年12月24日
石墨類負極有哪些缺陷?促進動力鋰電池進一步發展的關鍵是什么?
隨著燃料化石能源危機和全球溫室效應問題的加劇,發展新能源成為迫在眉睫的任務。新能源的發展必須依靠先進的儲能技術,其中鋰離子電池因其高能量密度、長循環壽命和高平均輸出電壓等優點已成為關注焦點。尤其在現今,消費電子類產品更新換代的加快、動力汽車產業的蓬勃發展、智能電網的迅速推廣以及其它技術領域需求擴大等更加促進了鋰離子電池產業的迅速發展。
負極作為其關鍵構成成分之一,直接決定了鋰離子電池的性能,目前市場上主要采用石墨類負極材料。然而,石墨類負極的兩個致命缺陷:低能量密度(理論比容量372mAh·g–1)和安全隱患(析鋰現象)令其無法適用于動力電池。因此,尋找一種新型高容量、安全性好和長循環的材料來替換石墨類負極材料成為動力鋰離子電池進一步發展的關鍵。
本文從SiOx的結構與電化學儲鋰機制方面出發,介紹了SiOx的結構與電化學性能的關系,闡明了SiOx存在的主要挑戰問題,并歸納了近期研究者們對硅氧化物負極的主要改進思路,最后對SiOx負極材料未來發展方向進行了展望。
1SiOx結構
SiOx材料早在幾十年前就已被人們所認知并在許多功能性應用中實現商業化,如利用其半導體屬性而廣泛運用于各種光電子器件,之后才被運用于鋰離子電池負極材料。因為SiOx為一種無定形結構,且在SiOx中Si的化合價態存在多樣性(Si0、Si2+、Si4+等),一些常規測試技術手段如X射線衍射(XRD),X射線光電子譜(XPS)和X射線Raman衍射等分辨率有限,僅能提供無定型SiOx的平均結構信息,因此,對于SiOx微觀結構的確定長期以來一直是個難題。隨著科技的不斷進步,對SiOx的結構認識也在不斷深入。
最早,出現有兩種經典的結構模型:隨機鍵合模型(Random-bonding,RB模型)和隨機混合模型(Random-mixture,RM模型)。其中RB模型指出SiOx的結構為一種由SiSi鍵與SiO鍵形成的連續隨機分布并貫穿整個網絡的單相結構;而RM模型則認為SiOx的結構是一種由超小范疇(<1nm)的Si和的SiO2混合物組成的雙相結構。
2SiOx儲鋰機制和電化學性能
由前面得知,SiOx并非由單一相組成,而是由許多均勻分布的納米級Si團簇、SiO2團簇以及介于Si/SiO2兩相界面之間的SiOx過渡相組成,因此其儲鋰機理非常復雜。Miyachi等發現SiO首次鋰化產物為LixSi、鋰硅酸鹽和Li2O,其中部分鋰硅酸鹽具有可逆性。JunKyuLee等認為SiO嵌鋰形成Li2O和LixSi,SiO2嵌鋰形成Li4SiO4和LixSi。而Chen等認為SiO2嵌鋰過程中不僅形成Li4SiO4和LixSi,還形成Li2O和Li2Si2O5。
Ohzuku等證明SiO在首次嵌鋰過程中形成Li4SiO4和LixSi,其中有部分SiO2不參與反應。Yamamura等發現結晶性的SiO2不具備嵌鋰電化學活性。
2016年,Yasuda等運用Li-Si-O三元相圖,從熱力學角度分析了SiO首次脫嵌鋰的演變過程,具體如圖3所示:(1)點①–⑦,初始階段SiO中的SiO2組分連續鋰化為Li2Si2O5、Li2SiO3、Li4SiO4且與Si共存;(2)點⑦–?,Si連續合金化為Li12Si7、Li7Si3、Li13Si4并與Li4SiO4共存;(3)點?–?,Li4SiO4分解成Li13Si4和Li2O;(4)點?–?,Li13Si4逐步鋰化形成Li22Si5并與Li2O共存;(5)點?,為鋰沉積過程。根據上述鋰化過程,可以得出SiO在不同平衡條件下的理論容量和首次充放電效率,平衡點?的理論容量和首次充放電效率分別為1480mAh·g–1和70.9%,平衡點?的理論容量和首次充放電效率分別為2584mAh·g–1和81.0%,平衡點?的理論容量為3283mAh·g–1、首次充放電效率為84.4%。
3SiOx存在的主要問題
3.1SiOx循環性能的衰減
在硅/鋰合金化過程中,伴隨著巨大的體積效應。雖然O原子的存在會在原位生成惰性緩沖基質相,但是總體體積效應仍然較大,產生的機械應力會使得活性材料粉化并與集流體之間發生電接觸失效;另外,SiOx的本征電導率低,不利于材料電化學性能的發揮;此外,SiOx負極與有些電解液的匹配性也不是很好,易被鋰鹽分解產生的微量HF腐燭等。由于以上因素的共同影響,最終導致了SiOx負極材料的循環性能嚴重衰減。
3.2SiOx首次Coulomb效率低
在電池運行過程中,由于有機電解質熱力學的不穩定性,使其在低電位如負極工作電位處會發生分解而在電極表面形成固體電解質界面相(SEI),這種不可逆SEI的形成消耗了電解液和正極材料脫出的Li,導致活性正極材料容量的明顯損失和低的第一循環Coulomb效率(CE)。