欧美黑人又粗又大的性格特点,国产农村妇女aaaaa视频,欧美高清精品一区二区,好爽又高潮了毛片免费下载

錳基化合物在化學電源中的優勢與潛力

鉅大鋰電  |  點擊量:0  |  2019年08月16日  

錳基化合物在化學電源中的優勢與潛力


摘要:當前化學電源中的正極材料大都使用過渡元素氧化物或其衍生物,而錳基材料更具優勢。在化學電源中應用最廣的是MnO2,如鋅/碳電池,堿錳電池,可充堿錳電池。對各類晶型MnO2結構研究較為透澈,又可互相轉變,并可制備Li-Mn-O化合物:如尖晶石型LiMn2O4和層狀結構的LiMnO2和層狀-層狀復合物是動力鋰離子電池的候選材料。與LiCoO2相比較,Mn-基材料的優勢是:資源豐富,價格低廉,環境友好,安全性強。


關鍵詞:MnO2電池;層狀鋰-錳-氧化物;尖晶石型鋰-錳-氧化物


當前實用化學電源中的陰極,幾乎都使用金屬氧化物或其衍生物作為活性材料。而眾多的電池體系中,以二氧化錳作為活性材料的最多。如一次電池中的鋅碳電池、堿錳電池、鋰-錳電池。貯備電池水激活鋅錳電池中的MnO2。二次電池中有可充堿錳電池,鋰合金可充電池的MnO2,以及在鋰離子電池正在大力研發的錳基衍生物如LiMnO2、Li2MnO3、LiMn2O4等。


1MnO2作為電極材料的優勢


MnO2是一種多晶型材料,隨著制備條件的不同,可有不同的晶型、形態、粒徑、孔隙率、比表面積,而適用于不同的應用場合。既可用于一次電池中,又可用于二次電池中。既可用于水溶液(弱酸性或堿性)中,也可用于有機溶劑中,既可作為可充電池的正極活性材料,又可作為超級電容器或電化學電容器的活性材料。其應用之廣,在諸多電池正極活性材料中是少見的,而且MnO2的研究跟著應用的需求,性能也在與時具進。


1.1MnO2的晶型彼此間可互相轉化


二氧化錳的晶體結構可分為三大類,存在5種主晶和30余種次晶。但其基本結構單元是由1個錳原子與6個氧原子配位組成的六方密堆積或立方密堆積結構[MnO6]八面體,八面體與鄰近的八面體共棱或共角頂即形成變化多端的復雜網絡,這些網絡又可容納各種不同的陽離子或水分子,就造成多種多樣不同類型的晶體結構。在結構中把未被占有的八面體晶格點形成平行于C軸的空隙(或空位)定義為隧道。隧道用T[m×n]表示其大小(T為隧道結構,m是隧道高度,n為隧道寬度)。據此可將MnO2的晶體結構分為三大類:即一維隧道結構[1×1]的β-MnO2(軟錳礦);由軟錳礦和斜方錳礦[1×2]交互生長構成的γ-MnO2,和[2×2]的α-MnO2(堿硬錳礦、隱鉀錳礦、鉛硬錳礦、水鈉錳礦、雜硬錳礦、欽鎂錳礦等具有不同陽離子);具有層狀結構的二維隧道結構的δ-MnO2。層間含有不同陽離子或水分子而有層間距不同的次晶(如合成鈉水錳礦和水錳礦),以及衍生物Li-Mn-O層狀物(LiMnO2、Li2MnO3…);具有網狀結構的三維隧道的λ-MnO2及Li-Mn-O的衍生物的LiMn2O4等等。


而這些不同晶體結構的MnO2及其衍生物在一定條件下發生晶型互變如圖1所示。圖中晶型的互變轉化條件參見已發表的文章[1]。



圖1二氧化錳及其相關鋰錳氧化物晶體結構互變關系


由圖1可以看出由α、β、γ、δ-MnO2與斜方MnO2,在一定條件下可轉變為尖晶石結構λ-MnO2、LiMn2O4、Li2Mn4O9等,由γ-MnO2可轉化為LiMnO2,因此又聯系到鋰錳氧化物間的互變,而后者正是鋰離子電池可供選擇的正極活性材料,從而大大拓寬了錳基材料應用的空間,而且這些錳基氧化物活性材料還比其金屬氧化物材料具有獨特的優勢。


1.2資源豐富


錳在地殼中貯量居第12位,在過渡金屬元素中只有Fe的貯量超過錳。資源豐富在考慮用于混合電動車(HEV)和電動車(EV)的電源正極材料是一個重要因素。錳礦生產為MnO2有成熟的技術(包括電解法和化學法),這也是MnO2正極活性材料具有的優勢。


1.3價格低廉


在一次電池中或二次電池中,很少有比MnO2價格便宜的正極活性材料。從原材料價格,2008年進口的天然錳礦(含錳量43%~45%)到岸價約為590美元/噸(約合4000元/噸),同期生產的電解二氧化錳(EMD)價格約10500元/噸,而進口鈷價最高約90萬元/噸,因此合成MnO2只有合成LiCoO2的價格的1%左右。而在鋰離子電池中的Li-Mn-O材料比起Li-Co-O也要便宜得多。


1.4安全性能優良


用于電池特別是在HEV或EV中在過充或過放時,錳基正極材料(特別是MnO2)要比LiCoO2或LiNiO2等材料發熱量要少,因而從過充到Mn4+時有較其他到Co4+安全或Ni4+的穩定性要好。


1.5環境友好


錳基材料比Co基材料的毒性來說,是無毒材料,在對環境友好來說也有重要的意義。


2近十年MnO2電池取得巨大進步


2.1完成了鋅錳電池從鋅碳電池、紙板電池到堿錳電池的無汞化的過渡。我國是一次電池的生產大國,產量占世界50%以上。2007年產量達300.7億只(堿錳電池82億只);2008年1月-7月產量達225億只;10年前我國堿錳電池產量僅有5億只,2008年前7個月產量近90億只,在這個發展過程中并實現了無汞化。這得益于我國電解二氧化錳(EMD)的技術的進步與產量的激增。紙板電池得益于普通EMD的加入,而無汞化堿錳電池得益于專用級EMD的增長。

2007年鋅碳電池級EMD產量達78337噸,而堿錳電池級EMD產量達81542噸,占世界EMD產量的41%以上。


隨著科技的進步,高技術消費電子設備大量進入市場,大多是需要高功率的堿錳電池,這又推動了高功率堿錳電池的研發。


2.2高功率堿錳電池的成就[1-5]


(1)要有高功率堿錳電池,首先要具有高功率放電能力的晶體結構為γ-MnO2型EMD[6]。而且這種EMD需要從粒徑、粒度分布、比表面、微孔面積、微孔體積、孔隙率、孔徑、最高開路電壓等各種因素的協調,就要有適宜的電解制備條件:改變與調整原來常法的電解條件,使硫酸、硫酸錳的濃度及其濃度比最佳化,電流密度的控制,溫度的選擇范圍,以及三者的協商[7,8]。此外還有水熱法,可以控制電解條件,可分別制得不同的α、β、γ、δ-MnO2,分別用于堿錳電池或非水溶液中的鋰錳電池[9];以及利用水熱法電解,可生產出有適宜的孔結構的高功率EMD[10]。


(2)評價高功率EMD的方法:


Bowden等[11,12]利用階躍電位電化學譜(SpECS)測得EMD樣品的功率電位圖,并將圖上高電位(1.45V)處的峰值功率與低電位(1.1V)處的峰值功率之比定義為功率系數。功率系數越大,表示高電位放電時間越長,功率系數就越大,EMD的高功率性能的γ-MnO2功率系數最好在4.0以上,實際上,定義功率系數是評價EMD的高電壓段放電性能。


利用電子順磁共振測定γ-MnO2參數法。因為γ-MnO2并非化學計量化合物,具有缺陷結構,恰當的化學式為:。在電子順磁共振(EpR)譜中,有兩種信號A和信號B。若MnO2中Mn均為4價,則B的信號寬度為△B0=430mt;由于存在Mn3+,偶極-偶極的交換收縮改變成“Zener”雙交換,則信號寬度改變。△B0越大,Mn3+/Mn4+越大,即OH基越多,缺陷結構存在的無序性越大,嵌入H+的容量也越大[13]。


當然高功率堿錳電池是一種綜合工藝,還需要有高功率的無汞鋅粉[14],電解液的組成和濃度以及在電池中的含量;各種添加劑的應用,導電材料的選擇;降低內阻特別是各部件間的接觸電阻(尤其是在EMD、石墨和電液三相界面的有效接觸,因此涉及正極成形的工藝如混料造粒,打環以及MnO2和石墨的粒徑的配合,形成正極結構孔隙率,以提供質子-電子對定位化有暢通的通道[15]);根據不同型號的電池有相應的優化配方等等。進一步提高其性能,仍有較大的研發空間。


近來報導,用低溫水熱法制得的直徑為1~4μm呈海膽狀的α-MnO2用于堿錳電池中放電率為50、200、500mA/g放電至0.6V,放電容量分別達280.5、185.9和168.2mAh/g;而對比的EMD的放電容量分別為254.9、121.1和90.2mAh/g,說明在高電流密度下α-MnO2的放電性能較好[16]。λ-MnO2在堿錳電池中的應用也取得了進展[17]。


2.3可充堿錳(RAM)電池


從節約一次資源,減少廢棄電池對環境造成的局部污染兩方面考慮,研發RAM電池是人們長期關注的課題。早在20世紀60年代末就出現了市售RAM電池,但由于二氧化錳電極的可逆性較差,隨著充放循環工作電壓迅速下降,而且因爬堿嚴重而作罷。經過近30年的努力,至20世紀90年代末,國內外又興起RAM電池生產熱潮,國外產量達數億只。主要是通過對EMD(γ-MnO2)的摻雜改性[18,19],加入金屬氧化物如Bi2O3,TIO2(銳鈦型),pbO、pbO2、SnO2等(加入的方法包括物理法、化學法和電化學法改性),以及基本弄清了γ-MnO2可逆性差不宜進行2e的反應充放電機理[20,21],在le反應γ-MnO2放電生成的是可溶MnOOH,而到了2e/2H+階段充放電生成了非活性的Mn3O4,因而若充放電限制在le/1H+內(最好在0.5e/0.5H+),加入有效的改性摻雜物,也可避免2e/2H+階段Mn3O4的生成[22]。

當然,生產整個RAM電池,還需要負極活性材料,隔膜、電液濃度,特別是充放電的方法的選定。


關于添加劑,近來有了新的進展。我們過去曾用磁場處理γ-MnO2,發現在高電壓區的放電量有大的改進[23]。近來通過加入永磁材料粒子如SmCo5、SmCo17等一系列鐵磁、亞鐵磁、超導材料及其組合物來改性EMD[24]。發現磁性粒子在正極內存在,影響了EMD還原態的晶體結構,同樣可避免充放電過程Mn3O4的生成,從而增大了MnO2的放電容量,例如在le/1H+均相還原中,是未加磁性粒子的MnO2放電容量1.5倍;而到2e/2H+區,總放電量是后者的2.0倍。而用于RAM電池中,磁性粒子SmCo17電極15次循環累積充電容量為3.96Ah/g(le/1H+區),放電容量累積為4.67Ah/g,初始放電容量達0.546Ah/g;而未處理的分別為2.144Ah/g,1.865Ah/g和0.466Ah/g;因而加有磁性粒子對電流效率提高和放電容量,循環性都極為有益。


與其他二次電池的活性材料一樣,除了摻雜改性外,還可進行表面修飾和包覆,如使用膠體超細石墨包覆MnO2,用于AA型RAM電池中,若包覆量占正極的3.2wt%,內阻為88.2Ω,包覆量0.6wt%內阻為174.2Ω;而未包覆的內阻卻是535.2Ω[25]。由于超細碳粒徑只有150nm,包覆在活性材料表面,可減少正極中導電石墨的含量,增大了MnO2的裝填量,也增大了電池的放電容量[26]。


近年來,在改善RAM電池的可充性,還提出了用脈沖電流電解Mn2+代替直流電解的方法,并降低槽溫(60℃-80℃),以獲取不同的缺陷結構(在MnOn中的n不同)有不同的含水量,發現n在1.957~1.976時循環性最佳[27]。

應該說RAM電池還有發展的空間,比起一次堿錳電池,性價比明顯優越得多。


2.4各種晶型MnO2在堿液中的可充性


各種晶型的MnO2在堿液中的可充性是不同的。即使同為EMD或CMD同是γ-型MnO2,不同樣品其可充性不相同[28],因為γ-MnO2的缺陷結構不一定相同。γ-MnO2的缺陷結構有兩類,一類是Dewolf缺陷,相應于金紅石型的β-MnO2在斜方錳礦中交互生長的濃度分數(pt表示);另一類是孿晶缺陷,是共棱八面體鏈鋸齒形生長比率(Mt或Tw表示)。在水溶液中嵌H+,最佳的是缺陷結構在46%≤pt≤50%,即交互生長的無序性最大越好。同是γ-MnO2,其缺陷pt與Mt不同,其嵌入H+的動力學有差異而不同,晶型結構不同,或由于隧道大小不同或由于含水量和雜離子的不同也會影響H+/e對的傳輸,其反應機理也有異,如δ-MnO2充放電過程的均相只在δ-MnO2→MnOOH0.60,嵌入H+超過0.6,即在充放電過程生成Mn3O4或Mn2O3;且由于層間的收縮與層內的膨脹不同,而影響其結構的穩定性。λ-MnO2是[1×1]隧道形成的三維網絡結構,H+的嵌脫不易,因而可充性差。


2.5MnO2在非水溶液中的可充性


γ-MnO2在非水溶液嵌脫Li+與在水溶液中嵌脫H+恰恰相反,一般應有最大的有序,即其缺陷結構參數小,即Mt→0,或pt→0。例如在Li/MnO2電池中,將EMD加熱處理脫水成為HEMD,生成β/γ,接近β-MnO2而呈有序化[29]。




α-MnO2在嵌Li電池中是研究的熱點之一,因為α-MnO2是[2×2]隧道結構,甚或[3×3]隧道結構,有嵌Li+的可能。為了嵌Li+有一系列的制備方法:早期的Mn2+的氧化,Mn2O3在H2SO4中的岐化;Li2MnO3在酸中處理,目的是制得不含K+、Ba2+等雜離子而含水量大的α-MnO20.15H2O,因為它具有高的熱穩定性(490℃)。顯然水分子是取代雜離子在隧道中穩定α-MnO2的結構。而NH3分子與水分子大小相近,鍵合性質相似,因而用NH3氣在低溫下處理而形成在隧道中由NH3與H+形成NH4+,穩定α-MnO2結構的NH3α-MnO2。進而用水化型α-MnO20.15H2O與LiOH混合、干燥、燒結(300℃)形成Li2O-α-MnO2。再用NH3與Li2O同時混合形成Li2O-NH3-α-MnO2。這些不同的隧道分子的α-MnO2,在3.8-2.0V間,電解液為1MLipF6/EC:DMC(1:1)的Li/MnO2電池中,π=0.2mA/cm2時,放電初始容量均超過了220mAh/g,且在循環20次時,Li2O-NH3-α-MnO2,Li2O-α-MnO2,NH3α-MnO2與α-MnO20.15H2O的放電容量分別為223、188、167和123mAh/g。前面三種α-MnO2的放電曲線并無下降趨勢,即大大改善了α-MnO2的充放循環性能[30,31]。


層狀結構δ-MnO2可由Li2MnO3析出而得到Li2O,組成Li/δ-MnO2電池,在i=0.2mA/cm2,3.6-2.4V間充放電,其初始容量約200mAh/g,而在第8次循環放電容量只有140mAh/g左右,說明容量衰減迅速[32]。

對三維網狀結構的λ-MnO2,美國曾擬做Li/λ-MnO2電池取代Li/SO2電池在特種中使用,因為它有較好的低溫性能,而且在高電位區優于Li/HEMD(β/γ-MnO2)電池,特別是4V平臺對低溫有利[33]。但作為二次Li電池λ-MnO2放電,易發生多相變化而未見實用化。


2.6MnO2與錳氧化物的應用拓展


由圖1可以看出,各類MnO2的互變以及各種錳基原料如Mn2+化合物、MnO2、Mn2O3、Mn3O4,都可制備EV和HEV的鋰離子電池正極活性材料:如尖石晶型,層狀,以及層狀化合物的復合材料,引人關注。


主要錳基鋰離子電池正極材料基本的物理參數和電化學性能如表2所示。錳基化合物的制備方法如表3所示


表2錳基鋰離子電池正極活性材料的物理參數和電化學性能



表3Mn基化合物的制備方法



材料必需具備單一的物相,良好的一致性,均勻的顆粒形態,并有亞微細粒甚或超微的粒子分布,以及大的比表面積。影響其本征性質的是粒子的形狀,尺寸(粒徑),取向、空隙、晶粒間界有大的原子分數。這就需要調整制備的條件。同樣的制備方法可能有不同的效果。


2.6.1LiMn2O4的優勢與存在問題


LiMn2O4具有尖晶石型三維網絡結構。Li+占據四面體(8a)的晶格點,Mn離子占據八面體(16d)的晶格點,氧處于32e晶格點呈敞開式立方密堆積排列。在Mn2O4構架中晶隙空間可視為四面體8a位置起著Li+遷移脫嵌的通道。因而適宜用作鋰離子正極活性材料的本征性質,而且原料豐富,成本低廉,對環境友好,尤其是熱穩定性好,安全性佳,是具有發展潛力的鋰離子正極材料。但也由于Mn基材料的固有性質,在充放電循環過程中的容量衰減主要由于Mn的存在而產生。如Mn2+在非水電解液中的溶解損失;在高電位下,由于Mn3+的岐化Jahn-Teller效應引起結構不穩定的損失;在高溫下,pF與水發生反應形成的HF對電極的侵蝕;隨著充放循環Mn由16d位置移向8a位置堵塞了Li+通道造成的損失以及產生結構無序化的損失。這些都與充放過程結構發生變化有關。解決容量衰減的方法大致有:改善合成材料的方法(如表2所示的各種方法)和條件(特別是燒結溫度與時間);對體相的摻雜或取代部分Mn;對材料表面的改性,修飾和處理;或者既取代又表面改性。


(1)體相摻雜取代


摻雜取代的方式有單元或多元陽離子的取代;單元或多元陰離子的取代;陽離子取代Mn和陰離子取代O同時進行。取代摻雜是一種折衷的選擇,有利也會有弊。有的能改善循環,卻可能要降低初始容量;有的陽離子取代可提高容量,卻可使循環性能變差。多元取代陰陽離子取代可能帶來合成的困難或條件的苛刻。所有的摻雜取代都有最適量,否則會帶來結構的變化。對Mn-基化合物體相改性取代摻雜物如表4所示。


表4摻雜Mn-基正極活性材料的摻雜取代元素



對摻雜改性元素的選擇大致有以下的規律:(1)摻入元素(M)(如Co、Ni、Cr)與O的結合能M-O要比Mn-O的結合能大,使晶胞收縮,縮短M-O鍵長,提高了LiMn2O4的尖晶石結構的穩定性。但還有不同的特性,如摻Co還能提高Li在體相的擴散系數,有助循環性能的提高;如摻Ni優選出取代量為0.5即構成LiNi0.5Mn1.5O4不同制備方法都可使初始容量達135-140mAh/g,循環數在40-60次范圍內,容量損失在0~4.5%之間;當取代量x在0.05≤x<0.5之間也可達130mAh/g左右。循環在100次以上容量衰減也只在2~5%之間,這是因為Ni-O鍵能大,弱化了Li-O鍵的結合能,降低了Li+擴散的內阻。(2)摻雜元素M-O的鍵能也與摻雜取代元素的離子半徑有關。rMn3+=0.0645nm,而rCr3+=0.0615nm,rTI4+=0.0605nm,Cr與TI的離子半徑均小于Mn3+的離子半徑,因而會使晶胞收縮,結構穩定在循環中不易形變,提高了循環性能,但一般初始容量會降低一些。因此一般要提高循環性能,就要選擇與Mn離子半徑相近或稍小的金屬離子。(3)要抑制材料的Jahn-Teller效應,一般要選擇+2或+3價的離子,主要是提高LiMn2O4中Mn的平均價態。但若既要提高循環性能,又有好的比容量,主要應制備單一的物相[34]。Al3+,Ga3+,Fe3+的離子半徑與Mn3+相同或相近,但均既占據四面體8a晶格點位置又占據八面體16d晶格點位置,而形成反尖晶石離子LiMn5O8存在,但只要M摻雜量最佳化,也有利循環性的提高[35]。(4)陰離子(F-)取代一般負電性比氧大,吸電子能力強,降低Mn在電液中溶解,使LiMn2O4的初始容量提高,但降低了Mn的價態,容易發生Jahn-Teller效應,循環性能會變壞,因此一般用F取代氧,必須有適應的陽離子取代Mn加以協調。


上述原則是以單元取代而言,它們的不足可以用多元取代或摻雜來加以改善,例如Ni取代成效顯著,但未見高倍率的報導。近來用不同的合成法,用Mg取代部分Ni構成LiMgδNi0.5-δMn1.5O4(δ=0.07)其理論容量為148.7mAh/g,非常接近未加任何取代的理論容量148.2mAh/g。結果表明Li/LiMg0.07Ni0.43Mn1.5O4在3.5-4.8V間0.2C放電,用固相法,溶膠凝膠法和干凝膠法制得的樣品的初始容量分別為116、108和106mAh/g,1C下分別為104.4、97和95.4mAh/g;30次循環后以5C率放電分別為70、64.8和74.2mAh/g,表明倍率能力良好[36]。又如TI取代Mn,以電解法先制得Ti-EMD,再用固相反應法制得Li0.973Ti0.045Mn1.893O4在2.5-4.6V間放電初始容量達206mAh/g,循環40次后容量保持率為20%,貯存3個月初始容量可達144mAh/g,40次循環后容量保持率為14%;而貯存電池在4.3-3.4V內的充放循環約150次后其容量保持率達94.7%。即二元取代既有好的初始容量,循環性,更有良好貯存性能[37]。


不少摻雜取代的離子(無論是+2價或高價離子)在室溫下有不錯的循環性,但是在高溫(55℃)高電位(5V)下容量衰減快,循環性下降:一是引起材料的氧的缺陷,一是引進入16d位置使混亂度增大。但摻Cu構成LiCuxMn2-XO4(0.025≤x≤0.1)范圍內如x=0.1時,在3-5V電壓下初始容量達130mAh/g,隨后的循環可穩定在120mAh/g[38]。5V級的材料早已做過研究如LiCu0.5Mn1.5O4和LiNixCu0.5-xMn1.5O2,它們的優點是使用高電位負極時整個電池也有高工作電壓,但仍受到電解液的限制[39]。


對LiMn2O4的體相改性,雖然作了大量的研究,取得了一些進展,但對容量衰減的機理并未形成統一的認識,有些實驗得出不同的結論,尤其是高功率大電流充放電還未有很好的解決。


(2)LiMn2O4的表面改性。


對LiMn2O4的表面改性應根據應用的要求,或為了提高材料表面電子電導率(如碳包覆),或為了防止材料表面受到電液的侵蝕溶解(如Al2O3包覆),或為了提高表面的孔隙率以適應高倍率充放電以延長循環性能,或為了除去表面膜層提高活性材料的利用率[40]。


選擇的包覆物應在表面形成均勻的包覆薄層,包覆過程的溫度不能破壞材料的結構,包覆方法要盡可能的簡便。已經研究過的Mn-基材料的包覆物有單質,金屬氧化物或其混合物,無機鹽,有機物如表5所示。


表5Mn-基正極活性材料的包覆物



如表5所示,用單質C、Ag等包覆LiMn2O4主要是提高材料的表面電子電導率,鍍Ni可提高電極的高溫性能[41],用金屬氧化物是在材料表面引入M-O(M為金屬元素)鍵,抑制氧的活性和Mn的溶解,提高材料的循環性能。ZrO2的包覆還可提高放電容量[42]。鹽類(如Li2CO3等)的包覆可抑制電液中產生的HF對電極材料的侵蝕。LiBO2(LBO)包覆,具有較好的離子電導率,減小比表面積,減緩HF的侵蝕,且在高電壓下有效抑制電極與電液的接觸,降低電液的分解[43]。LiCoO2包覆一方面降低了與LiMn2O4電液的接觸,抑制了材料的溶解,而且Co3+可進入16d晶格點位,不但抑制了Jahn-Tellen效應,也減少了Mn3+的岐化,既提高了電極的比容量,也改善了電池的可逆容量[44]。有機物如乙酰丙酮處理LiMn2O4可與其表面上Mn空軌道成鍵,使之不再對電液分解起催化作用,抑制了電液的分解,在發生配位成鍵的同時,還可溶解一些Mn離子形成非電活性的Li2MnO3,因而也可防HF的侵蝕。


LiMn2O4本身以及與電液的熱穩定性不一樣。隨著電池荷電態的不同引起開始反應溫度與反應熱不同。在4.3V充電時,反應熱達-408.2KJ/mol。此時的反應溫度為151℃[45]。雖然遠低于本身在4.3V的240℃,也是較為安全的。


據報導Davidson等合成了LiMn1.5Ni0.5O4,以2.2C放電容量超過了100mAh/g,循環100次后,容量沒有明顯的衰減,還可進行11C放電[46]。


此外,美國阿貢國家實驗室研發了以Li4Ti5O12為負極,LiMn2O4為正極的鋰離子電池,具有極高的功率密度,壽命和安全性。循環3000次后容量保持率達80%;50C放電容量保持率在低電流放電容量的90%[47],而且證明了尖晶型的Li4Ti5O12LiMn2O4鋰離子電池是最安全的體系[48]。這些指標已接近或達到混合電動車的要求。


2.6.2層狀LiMnO2


LiMnO2有多種晶型。屬層狀結構的有α-NaFeO2型的單斜m-LiMnO2和巖鹽型呈正方的O-LiMnO2。在熱力學平衡條件下,O-LiMnO2比m-LiMnO2穩定些,前者的理論容量達308mAh/g,后者則為285mAh/g,都比LiCoO2要高。但由于Mn3+3d電子能帶分布(t2geg)的反鐵磁相互作用,引起Jahn-Teller效應。使氧的排列發生畸變,難以形成理想的密堆積,影響結構的穩定。在充放電的過程,物相轉變為尖晶石型結構。由于層狀LiMnO2和尖晶石型LiMn2O4的Mn基化合物結構的變化,引起容量的衰減,都是Mn為核心造成,不同的是前者Mn為3價,而后者的Mn平均氧化態為3.5價。因此,兩者的制備方法,對體相的改性和表面的處理修飾,均是大同而有異。若部分Mn被Ni或Co取代,結構呈O2型(O表示八面體氧配位,2表示兩層,每單元晶胞為MO2),即結構變穩些,可抑制相變。隨著制備方法和取代離子的不同,還有O3型結構即為氧八面體配位形成3層,或形成氧四面體配位的T2型,或菱形Na+配位的p2型結構。p2型轉化為O2型只需MO間互相滑移即可,即是離子交換法的理論根據。在電化學充放電過程,T2也可轉變為O2型。如取代形成富Li并Ni取代的層狀物,會構成四面體氧配位的T2型結構,這也是在層狀LiMnO2中Ni取代Mn成為研究熱點,并具有良好的容量和循環性的原因。


關于LiMnO2的制備方法,體相改性,和表面修飾已分別在表3、4和5中列出。在體相改性中,值得一提的是構成富鋰(或過嵌鋰)和缺鋰的兩類化合物。鋰的嵌入,總的來說取代部分Mn,占據Li層中四面體位置,有利于保持結構的穩定性。當過嵌鋰,可提高Mn的平均氧化態。并抑制Jahn-Teller效應。早期Lu等[49]合成了Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2,x=5/12時在3.0-4.4V間以30mAh/g電流密度放電,容量達150mAh/g,且安全性優于LiCoO2,容量和循環性都得到提高[50]。Li(Li0.2Ni0.1Co0.2Mn0.5)O2可視為兩種層狀物的固溶體,也可視為過嵌或取代的層狀化合物或超晶格結構的化合物,初始容量可達234mAh/g,40次循環后容量保持率達98.3%。過嵌鋰要適中,或有利于容量,或有利于循環性能的改進。有的富鋰如Li[Lix(Ni0.5Mn0.5]O2發現混排度低于LiNi0.5Mn0.5O2;而Li[LixNi1/3Co1/3Mn1/3]O2(0.03≤x≤0.17)比Li(Ni1/3Co1/3Mn1/3)O2的混排度要小,有序性增大,對容量有利。




對缺Li的可轉化為O2型,O2-Li2/3+x(Co0.15Mn0.85)O2(x=0,1/3)兩種化合物當x=1/3即為化學計量化合物,當x=0即為缺Li的層狀化合物可轉化為O2型。O2-Li2/3+x(Co0.15Mn0.85)O2在電流密度5mA/g時可逆容量均為180mAh/g,在電流密度140mA/g即1C下,兩種均為100mAh/g(在2.5-4.6V間)。由EIS研究表明在循環10~15次后O2(Li+x)的容量衰減增大,這與表面膜形成與體相的電阻增大一致。隨后的循環(≤6)次,鋰離子擴散系數:DLi為2×10-11~10×10-11cm2/S,而O2(Li)為0.5×10-10~3×10-10cm2/S;即化合物的容量衰減,除了界面動力學外,也與DLi值(即體相內)的變化有關[51]。說明缺鋰化合物對抵抗容量衰減有利。此外由Na0.7(Ni1/6Mn5/6)O2通過離子交換法制得Li0.7(Ni1/6Mn5/6)O2是缺鋰化合物,在2.0-4.6V間循環沒有明顯的容量衰減,作者認為是一種面缺陷結構[52]。


總之,富Li和缺Li的層狀化合物均有較好的性能,是值得關注的課題。Zn、Mg等較大離子半徑取代Mn,在Mn3+的價帶引入空穴,產生干擾反鐵磁自旋排列的Mn4+,提高了m-LiMnO2結構的穩定性。Co、Cr、Ni等過渡金屬離子半徑與Mn3+相近,并占據八面體位置,抑制Jahn-Tellen效應,穩定了層狀結構。特別是Ni在層狀中取代,有其良好的性能[53]。


LiMnO2的包覆,與LiMn2O4的包覆機理類似。主要是抑制錳的分解,電解液對電極的侵蝕。金屬氧化物的包覆,金屬M-O的強度,抑制表面氧的活性或提高Li+擴散途徑以提高電化學性能等。


2.6.3層狀Li2MnO3的復合


Li2MnO3屬巖鹽型單斜晶系結構,空間群為C2/m,與LiMnO2不同的是氧不是理想的密堆積,八面體層中交疊的是Li+與Mn4+層。由于Mn是4價,所以Li2MnO3本身不具電化學活性,Li+也不能脫出,要使之成為正極活性物,方法之一是用3d金屬取代部分Mn,使之形成固溶體復合物,而終端產物可視為Li2MnO3與其他層狀物的復合物。


層狀Li2MnO3可與層狀化合物(LiMO2(M=Co、Ni、Fe……等)形成復合物。由于許多LiMO2與Li2MnO3多為同構物,因而研究過的有(LiCoO2-Li2MnO3,Li1-xNi1-xO2-Li2MnO3,LiCoO2-LiNi0.5Mn0.5O2復合物[54]。這些復合物正極一般都有高電位,高能量密度的特性,因而引起人們的關注。但制備方法和條件都十分苛刻,含Co等成本也昂貴。


LiFeO2也是層狀化合物,LiFeO2-Li2MnO3復合,Fe、Mn均價廉,因而更吸引人,但立方α-LiFeO2與四方γ-LiFeO2和Li2MnO3都是非電化學活性物,要用Fe部分取代Li2MnO3中的Mn就必須用軟化學(低溫)法,即H+/Li+交換或Na+/Li+交換制備法,并限定Fe/Mn+Fe之比。早先用Fe取代Li2MnO3的部分Mn,用固相反應法(Fe/(Fe+Mn)<0.3)或水熱燒結法(Fe/(Fe+Mn)<0.75)(650℃
由于尖晶石型結構是三維網狀,可以設想與層狀Li2MnO3的復合物的制備要困難一些,已經研究的是Li2MnO3與LiMn2O4的復合,制備出xLi2MnO3(1-x)Li1+δMn2-δO4(0
通過H+與Li+間的離子交換,用H2SO4自Li2MnO3層間移去Li2O[30],首先得到的產物是(1-x)[Li(Li0.33Mn0.67)O2]x(0.67MnO2)或(1-x)Li2MnO3xMnO2,在聚合物鋰電池中以C/15倍率,在2.0-3.8V間充放循環12次后放電容量為155mAh/g。放電曲線表明循環過程中未轉化為尖晶石結構,似逐漸轉化為無定型;隨后嵌入的Li+不能進入Li2MnO3,而只能進入MnO2成為LiMnO2,構成xLi2MnO3(1-x)LiMnO2。由此也可設想形成(1-x)Li2M′O3xLiMnO2(M′=Ti4+,M=Ni3+、Mn3+)的新型層狀與層狀結構的復合物,如0.05Li2TiO30.95LiMn0.5Ni0.5O2等。


3結論


錳資源豐富、廉價低廉,對環境友好,安全性又佳,結構研究較為深入,既可用于一次電池,又可用于二次電池。各種晶型之間又可互相轉化,Li-Mn-O化合物-層狀的LiMnO2和三維尖晶石型LiMn2O4是動力電池的正極材料的候選者。相比LiCoO2,Mn-基材料既有優勢,又有發展潛力。


參考文獻

[1]夏熙.二氧化錳及相關錳氧化物的晶體結構、制備及放電性能[J].電池,2005,35(3):199-203.

[2]李同慶.提高堿錳電池性能的研究進展[J].電池,2002,32(6):329-333.

[3]夏熙.大電流放電堿錳電池的進展[J].電池,2003,33(2):83-86.

[4]王金良,陳來茂,陳永心.鋅錳電池產業現狀與發展方向探討[J].電源技術,2006,30(2):89-92.

[5]馬扣祥,孟良榮,夏熙.高功率放電的二氧化錳和電池[J].電源技術,2007,31(1):4-8.

[6]夏熙.γ-MnO2結構模型現狀與EMD的性能[J].電池工業,2002,7(3-4):169-173.


相關產品

  1. <form id="ejezu"></form>

  2. 主站蜘蛛池模板: 亚洲精品字幕在线观看| 无码人妻丰满熟妇bbbb| 538在线精品| 万载县| 息烽县| 熟妇人妻中文字幕无码老熟妇| 德保县| 青春草在线视频观看| 欧美一性一乱一交一视频| 一边摸一边做爽的视频17国产| 国产成人无码av| 亚洲一区二区三区| 井冈山市| 精品人妻无码一区二区色欲产成人| 国产婷婷色一区二区三区| 国产99久一区二区三区a片| 襄垣县| 贵州省| 隆昌县| 邵武市| 正镶白旗| 久久久天堂国产精品女人| 新蔡县| 玉蒲团在线观看| 博客| 磐石市| 国产麻豆剧果冻传媒白晶晶| 国产熟女一区二区三区五月婷 | 肃北| 精品人妻无码一区二区色欲产成人| 亚洲人成在线观看| 无码人妻丰满熟妇奶水区码| 国产肉体xxxx裸体784大胆| 三人成全免费观看电视剧| 镇沅| 格尔木市| 国产精品毛片久久久久久久| 梁平县| 377人体粉嫩噜噜噜| 毕节市| 午夜成人亚洲理伦片在线观看| 亚洲亚洲人成综合网络| 国产女人18毛片水真多| 集安市| 阿尔山市| 特黄aaaaaaa片免费视频| 强行无套内谢大学生初次| 鄯善县| 香蕉久久国产av一区二区| 亚洲无av在线中文字幕| 宜都市| 淮南市| 国产偷人爽久久久久久老妇app| www夜片内射视频日韩精品成人| 高阳县| 精品国内自产拍在线观看视频| 新平| 亚洲午夜福利在线观看| 国产又色又爽又高潮免费| 无码人妻丰满熟妇精品区| 北宁市| 97香蕉碰碰人妻国产欧美| 国产乱人伦精品一区二区| 辉南县| 国産精品久久久久久久| 国内老熟妇对白xxxxhd| 江北区| 国产真实乱人偷精品人妻| 国产成人精品免高潮在线观看| 国产无套精品一区二区三区| 成人免费区一区二区三区| 和硕县| 欧美日韩在线视频一区| 双城市| 欧美三级欧美成人高清| 国产精品无码一区二区三区| 国产成人无码一区二区在线播放| 黑巨茎大战欧美白妞| 特大黑人娇小亚洲女| 国产人成视频在线观看| jzzijzzij亚洲成熟少妇| 熟妇高潮精品一区二区三区| 亚洲女人被黑人巨大进入| 精产国品一二三产区m553麻豆| 凤阳县| 天堂а√在线中文在线新版| 文登市| 日本不卡高字幕在线2019| jlzzzjlzzz国产免费观看| 国产成人精品久久| 欧美人与性囗牲恔配| 久久久久噜噜噜亚洲熟女综合| 古交市| 性久久久久久久| 真实的国产乱xxxx在线| 麻豆乱码国产一区二区三区| 成人片黄网站色大片免费毛片| 文山县| 国产精品成人免费一区久久羞羞| 成全影院电视剧在线观看| 少妇粉嫩小泬喷水视频www| 无码aⅴ精品一区二区三区| 国产草草影院ccyycom| 国产美女裸体无遮挡免费视频| 色一情一区二| jzzijzzij日本成熟少妇| 成人h视频在线观看| 洪湖市| 久久99精品国产.久久久久| 成人欧美一区二区三区在线观看| 成人视频在线观看| 国产香蕉尹人视频在线| 巴青县| 欧美性猛交aaaa片黑人| 69精品人人人人| 超碰免费公开| 人妻精品久久久久中文字幕69| 久久久久女教师免费一区| 波多野结衣网站| 灵台县| 且末县| 精品国产av色一区二区深夜久久| 一区二区视频| 成年免费视频黄网站在线观看| 久久丫精品久久丫| 人妻巨大乳hd免费看| 江永县| 欧美成人在线视频| 狠狠躁日日躁夜夜躁2022麻豆| 方城县| 少妇被躁爽到高潮无码人狍大战 | 国产农村妇女aaaaa视频| 湄潭县| 一本大道久久久久精品嫩草| gogogo在线高清免费完整版| 上饶县| 日韩精品一区二区三区| 国产福利视频| 景东| 欧美一性一乱一交一视频| 色综合99久久久无码国产精品 | 日本不卡三区| 福利视频在线播放| 久久综合久色欧美综合狠狠| 改则县| 99国产精品久久久久久久成人热| 在线天堂www在线国语对白| 国产伦精品一区二区三区免.费| 国产精品无码久久久久成人影院| 解开人妻的裙子猛烈进入| 濉溪县| 邵阳市| 阿瓦提县| 苍溪县| 少妇被爽到高潮动态图| 永久免费无码av网站在线观看| 国产美女裸体无遮挡免费视频| 亚洲乱码国产乱码精品精大量| 男人添女人下部高潮全视频| 元氏县| 襄城县| 偃师市| 精品人妻无码一区二区色欲产成人| 昌图县| 敦化市| 欧美乱人伦人妻中文字幕| 阿勒泰市| 日本55丰满熟妇厨房伦| 平泉县| 中文字幕亚洲无线码在线一区| 桃源县| 欧美性生交xxxxx久久久| 连城县| 一本大道久久久久精品嫩草| 三门县| 久久久久成人精品无码| 欧洲熟妇色xxxx欧美老妇多毛| 国产欧美一区二区三区精华液好吗| 中文成人在线| 精品黑人一区二区三区久久| 新宾| 欧美大屁股熟妇bbbbbb| 江华| 久久综合久色欧美综合狠狠| 涪陵区| 久久久久成人精品免费播放动漫 | 嵊泗县| 亚洲区小说区图片区qvod| 亚洲国产一区二区三区| 欧美三级欧美成人高清| 一区二区三区视频| 加查县| 台湾省| 啦啦啦www日本高清免费观看| 成全视频大全高清全集在线| 熟女丰满老熟女熟妇| 罗定市| 濮阳市| 林口县| 国产人妻精品一区二区三区| 鄄城县| 肥乡县| 熟女丰满老熟女熟妇| 昌都县| 999zyz玖玖资源站永久| 库尔勒市| 久久久久久无码午夜精品直播| 99久久人妻无码精品系列| 久久精品99久久久久久久久| 特黄aaaaaaa片免费视频| 福建省| 成全影视大全在线看| 永安市| 中文字幕人成乱码熟女香港| 全部孕妇毛片丰满孕妇孕交| 欧美大屁股熟妇bbbbbb| 天堂中文在线资源| 长春市| 色婷婷综合久久久中文字幕| 民权县| 日韩电影一区二区三区| 台东县| 好吊视频一区二区三区| 丰都县| 久久99精品久久只有精品| 陇南市| 三人成全免费观看电视剧 | 国产精品毛片va一区二区三区| 国产奶头好大揉着好爽视频| 三年片在线观看大全| 淮南市| 黑水县| 寿宁县| 甘肃省| 铅山县| 清丰县| 精品乱码一区二区三四区视频| 牛牛在线视频| 久久国产成人精品av| 柳河县| 夜夜躁很很躁日日躁麻豆| 天天天天躁天天爱天天碰2018| 安新县| 国产精品久久久国产盗摄| 荆州市| 熟妇人妻av无码一区二区三区| 东源县| 河曲县| 久久久久久久久毛片无码| 国产精品久久久久久久久久久久人四虎| 武定县| 国产无套精品一区二区三区| 国产激情综合五月久久| 亚洲精品久久久久国产| 成熟人妻av无码专区| 欧美人妻一区二区三区| 娇妻玩4p被三个男人伺候电影| 成年免费视频黄网站在线观看| 高邑县| 国产成人精品一区二区三区视频| 成人毛片100免费观看| 汉阴县| 成全电影大全第二季免费观看 | 国精品无码人妻一区二区三区 | 国产无遮挡aaa片爽爽| 国产精品无码久久久久成人影院| 无码国产精品一区二区高潮| 上思县| 峨边| 金沙县| 白嫩少妇激情无码| 自拍偷自拍亚洲精品播放| 宁蒗| 图们市| 久久久久久亚洲精品中文字幕| 白嫩少妇激情无码| 无码成人精品区在线观看| 定南县| 人人妻人人澡人人爽国产一区 | 什邡市| 正宁县| 西林县| 漠河县| 大悟县| 亚欧成a人无码精品va片| 中文成人无字幕乱码精品区| 蜜桃成人无码区免费视频网站| 成人做爰免费视频免费看| 88国产精品视频一区二区三区 | 欧美成人aaa片一区国产精品 | 嘉义县| 香格里拉县| 秭归县| 白又丰满大屁股bbbbb| 欧美俄罗斯乱妇| 性xxxx搡xxxxx搡欧美| 成全电影大全在线观看国语版 | 国产无遮挡aaa片爽爽| 国产精品无码天天爽视频| 国产69精品久久久久久| 成人h视频在线观看| 昌宁县| 精品无人国产偷自产在线| 亚洲欧美日韩一区二区| 紫金县| 国产欧美一区二区精品性色| 法库县| 天全县| 邻水| 呼伦贝尔市| 大关县| 江川县| 进贤县| 岱山县| 康保县| 阿拉善右旗| 潢川县| 呼伦贝尔市| 卢龙县| 日本不卡三区| 男人扒女人添高潮视频| 莱阳市| 精品夜夜澡人妻无码av | 性一交一乱一伧国产女士spa| 久久久久成人精品免费播放动漫| 大兴区| 人妻熟女一区二区三区app下载| 三年成全在线观看免费高清电视剧 | 与子敌伦刺激对白播放的优点 | 准格尔旗| 北宁市| 天美麻花果冻视频大全英文版| 亚洲精品久久久久国产| 波多野结衣人妻| 亚洲欧美精品午睡沙发| 大肉大捧一进一出好爽动态图 | 一出一进一爽一粗一大视频| 人妻无码一区二区三区| 内射干少妇亚洲69xxx| 沙湾县| 国产精品自产拍高潮在线观看| 亚洲精品鲁一鲁一区二区三区| 丰满女人又爽又紧又丰满| 少妇扒开粉嫩小泬视频| 亚洲欧美一区二区三区| 蜜桃久久精品成人无码av | 99热在线观看| 草色噜噜噜av在线观看香蕉| 汝城县| 九龙城区| 龙里县| 黄大仙区| 桃园县| 怀宁县| 无码少妇精品一区二区免费动态| 黔江区| 亚洲精品久久久久国产| 荆州市| 少妇真人直播免费视频| 一本大道久久久久精品嫩草| 驻马店市| 长兴县| 国产乱人对白| 内射后入在线观看一区| 国产午夜精品一区二区三区四区| 葫芦岛市| 欧美精品乱码99久久蜜桃| 欧美亚洲精品suv| aa片在线观看视频在线播放| 一本色道久久综合无码人妻 | 久久久天堂国产精品女人| 邵阳市| 国产成人精品白浆久久69| 日韩精品人妻中文字幕有码| 亚洲国精产品一二二线| 中文字幕乱码中文乱码777| 日韩精品极品视频在线观看免费 | 欧美做爰性生交视频| 强行糟蹋人妻hd中文| 人妻激情偷乱视频一区二区三区| 日本少妇高潮喷水xxxxxxx| 邵阳市| 国产精品美女久久久久av爽| 乌鲁木齐市| 日本真人做爰免费视频120秒| 国产精品久久久一区二区| 国模无码大尺度一区二区三区 | 国产精品亚洲一区二区无码| chinese熟女老女人hd| 精品国产乱码久久久久久婷婷| 东丽区| 郁南县| SHOW| 色欲av永久无码精品无码蜜桃| 黑巨茎大战欧美白妞| 三叶草欧洲码在线| 色欲一区二区三区精品a片| 九龙城区| 浑源县| 国产绳艺sm调教室论坛| 新田县| 鸡泽县| 成全电影大全在线播放| 无码人妻丰满熟妇区bbbbxxxx| 夜夜躁狠狠躁日日躁| 张北县| 性做久久久久久| 三年在线观看高清大全| 国产精品久久久久久| 日韩伦人妻无码| 大地影院免费高清电视剧大全| 人与禽性动交ⅹxxx| 微山县| 日本电影一区二区三区| 祁阳县| 久久精品国产av一区二区三区| 性生交大片免费看女人按摩| 狂野少女电视剧免费播放| 久久99精品久久只有精品| 狠狠人妻久久久久久综合蜜桃| 一本一道久久a久久精品综合| 国精品人妻无码一区二区三区喝尿| 三年成全全免费观看影视大全| 波多野结衣人妻| 图片区 小说区 区 亚洲五月 | 成全影视大全在线观看国语| 麻阳| 色妞色视频一区二区三区四区| 成人做受黄大片| 欧美俄罗斯乱妇| 伊人久久大香线蕉综合网站| 田东县| 日韩视频在线观看| 夜夜躁狠狠躁日日躁| 灵璧县| 夏邑县| 道孚县| 太湖县| 调兵山市| 延吉市| 国产午夜福利片| 广宗县| 国产精品美女久久久久av超清| 国产精品丝袜黑色高跟鞋| 久久av无码精品人妻系列试探| 一区二区三区国产| 无码人妻av一区二区三区波多野| 三年大片免费观看大全电影| 特级做a爰片毛片免费69| 中文字幕无码精品亚洲35| 叙永县| 性一交一乱一乱一视频| 日韩伦人妻无码| 欧美性猛交xxxx乱大交3| 久久久久国产一区二区三区| 镇平县| 欧美亚洲精品suv| 国产精品污www在线观看| 国产精品96久久久久久| 国产精品99精品久久免费| 欧美又粗又大aaa片| 国产熟妇搡bbbb搡bbbb| 国产女女做受ⅹxx高潮| 宿松县| 少妇扒开粉嫩小泬视频| 青川县| 精品亚洲国产成av人片传媒| 久久精品一区二区三区四区| 吉安市| 师宗县| 无码一区二区三区视频| 长治县| 湘阴县| 万宁市| 桃江县| 获嘉县| 内江市| 江山市| 太湖县| 国产人妻精品午夜福利免费| 灵川县| 阳高县| 丰满岳乱妇在线观看中字无码| 国产精品久久久久av| 国产伦精品一区二区三区妓女下载| 久久久久无码国产精品不卡| 三年成全免费观看影视大全| 灵宝市| 久久久久无码精品亚洲日韩| 濮阳市| 国产精品丝袜黑色高跟鞋| 丰城市| 成全在线观看免费完整| 少妇特黄a一区二区三区| 永和县| 久久久国产精品黄毛片| 久久久国产精品人人片| 69久久精品无码一区二区| 男女无遮挡xx00动态图120秒| 色欲一区二区三区精品a片| 波多野结衣乳巨码无在线观看| 成全电影大全在线观看国语版高清 | 强伦人妻一区二区三区视频18 | 久久国产精品波多野结衣av| 国产又黄又爽的免费视频| 天天爽天天爽夜夜爽毛片| 日韩av无码一区二区三区| 欧美性生交大片免费看| 日本免费一区二区三区| 嘉义市| 永久免费看mv网站入口亚洲 | 从化市| 自拍偷在线精品自拍偷无码专区| 最好看的2018国语在线| 芒康县| 阜新| 大化| 镇江市| 诸城市| 临漳县| 人妻在客厅被c的呻吟| 田东县| 汽车| 看免费真人视频网站| 理塘县| 克山县| 国产绳艺sm调教室论坛| 永宁县| 开阳县| 广宗县| 日韩精品极品视频在线观看免费| 99精品一区二区三区无码吞精| 准格尔旗| 无码人妻久久一区二区三区蜜桃 | 精品人妻人人做人人爽夜夜爽| 国产做爰xxxⅹ久久久精华液| 国产精品人妻| 欧美人妻日韩精品| 成人毛片100免费观看| 国精产品一区一区三区| 延川县| 少妇被躁爽到高潮| 鲁鲁狠狠狠7777一区二区| 男人的天堂在线视频| 利辛县| 日本少妇高潮喷水xxxxxxx| 成熟人妻av无码专区| 紫金县| 久久久久成人精品无码| 又大又长粗又爽又黄少妇视频 | 禹城市| 精品免费国产一区二区三区四区| 久久久无码人妻精品无码| 亚洲人成色777777老人头| 海丰县| 白水县| 六盘水市| 观塘区| 躁躁躁日日躁| 丝袜美腿一区二区三区| 汽车| 久久aaaa片一区二区| 龙岩市| 辉南县| 精品夜夜澡人妻无码av| 开封市| 免费又黄又爽又色的视频| 鹤山市| 艳妇臀荡乳欲伦交换在线播放| 亚洲精品乱码久久久久久不卡| 天天爽天天爽夜夜爽毛片 | 国产成人精品久久| 婷婷四房综合激情五月| 亚洲精品白浆高清久久久久久| 特黄三级又爽又粗又大| 国产精品偷伦视频免费观看了| 会东县| 无码人妻一区二区三区在线视频| 武陟县| 无码人妻丰满熟妇奶水区码 | 中文字幕人成人乱码亚洲电影| 亚洲中文字幕无码爆乳av| 乌拉特后旗| 躁老太老太騷bbbb| 国产无人区码一码二码三mba| 成全电影大全在线观看国语高清| 色视频www在线播放国产人成| 熟妇高潮精品一区二区三区| 欧洲熟妇色xxxx欧美老妇多毛| 女人和拘做爰正片视频| 国产午夜福利片| 无码人妻精品一区二区| 萍乡市| 白银市| 中文无码精品一区二区三区| 东海县| 威远县| 国产精品51麻豆cm传媒| 久久久久久久97| 盐边县| 诸城市| 东辽县| 资溪县| 南宫市| 亚洲国产精品18久久久久久| 德格县| 长治市| 亚洲欧美精品aaaaaa片| 朝阳市| 天天综合天天做天天综合| 龙山县| 成全高清视频免费观看| 广灵县| 男女无遮挡xx00动态图120秒| 汶上县| 国产精品96久久久久久| 蜜桃一区二区三区| 久久99精品久久久久久琪琪| 方城县| 人妻熟女一区二区三区app下载| 武鸣县| 麻豆精品| 南雄市| 肉色欧美久久久久久久免费看 | 成人做受黄大片| 中文字幕人妻丝袜乱一区三区| 亚洲熟女一区二区三区| 午夜家庭影院| 晋宁县| 亚洲爆乳无码一区二区三区 | 欧美日韩在线视频一区| 国产成人精品免高潮在线观看| 成人做爰视频www| 久久中文字幕人妻熟av女蜜柚m| 欧美又粗又大aaa片| 少妇熟女视频一区二区三区| 顺昌县| 米林县| 成全电影大全在线观看| 松阳县| 土默特左旗| 强行糟蹋人妻hd中文字幕| 云浮市| 国产99久一区二区三区a片| 太原市| 蜜桃av色偷偷av老熟女| 搡老岳熟女国产熟妇| 巴林左旗| 定州市| 国产福利视频| 国产亚洲精品久久久久久无几年桃| 前郭尔| 汾阳市| 国产精品久久久久久久久久 | 伊人久久大香线蕉综合网站| 竹山县| 无极县| 亚洲码欧美码一区二区三区| 南陵县| 色欲av永久无码精品无码蜜桃 | 国产又黄又爽的免费视频| 博白县| 色一情一乱一伦一区二区三区| 太仓市| 中文字幕乱码人妻无码久久| 欧美性大战xxxxx久久久 | 永仁县| 定襄县| 国产女人被狂躁到高潮小说| 国产真实伦对白全集| 国产成人综合欧美精品久久 | 亚洲最大的成人网站| 午夜家庭影院| 沂源县| 国产欧美日韩一区二区三区| 无码国产69精品久久久久网站| 日产无码久久久久久精品| 宁夏| 国产又粗又猛又爽又黄| 茶陵县| 成av人片在线观看www| 长泰县| 吉安县| 衡东县| 浦城县| 盘锦市| 周口市| 盐城市| 钟祥市| 中文字幕乱妇无码av在线| 天堂资源最新在线| 欧美午夜精品久久久久免费视| 国产免费无码一区二区| 漯河市| 无码少妇一区二区三区| 五月天激情国产综合婷婷婷| 强行糟蹋人妻hd中文字幕| 精品亚洲一区二区三区四区五区| 乐昌市| 国产精品成人国产乱| 欧美午夜精品一区二区蜜桃| 呼伦贝尔市| 性xxxx欧美老妇胖老太性多毛| 黑山县| 国产精品成人无码免费| 亚洲色成人www永久网站| 国精产品一区一区三区mba下载| 汽车| jzzijzzij日本成熟少妇| 国产精品999| 焉耆| 狠狠干狠狠爱| 久久久久亚洲精品| 国产精品久久久久久吹潮| 国产老熟女伦老熟妇露脸| 国产人成视频在线观看| 石泉县| 内射干少妇亚洲69xxx| 麻阳| 久久久久99精品成人片直播| 色妺妺视频网| 99精品久久毛片a片| 狠狠人妻久久久久久综合| 定南县| 安陆市| 文山县| 资阳市| 法库县| 亚洲免费观看视频| 丝袜 亚洲 另类 欧美 变态| 肥乡县| 精品欧美乱码久久久久久1区2区| 四川丰满少妇被弄到高潮| 亚洲成av人片一区二区梦乃| 水城县| 国产精品无码一区二区三区| 工布江达县| 丹东市|