欧美黑人又粗又大的性格特点,国产农村妇女aaaaa视频,欧美高清精品一区二区,好爽又高潮了毛片免费下载

鋰電池硅碳負極大爆發

鉅大鋰電  |  點擊量:0  |  2019年07月10日  

隨著燃料化石能源危機和全球溫室效應問題的加劇,發展新能源成為迫在眉睫的任務。新能源的發展必須依靠先進的儲能技術,其中鋰離子電池因其高能量密度、長循環壽命和高平均輸出電壓等優點已成為關注焦點。尤其在現今,消費電子類產品更新換代的加快、動力汽車產業的蓬勃發展、智能電網的迅速推廣以及其它技術領域需求擴大等更加促進了鋰離子電池產業的迅速發展。


負極作為其關鍵構成成分之一,直接決定了鋰離子電池的性能,目前市場上主要采用石墨類負極材料。然而,石墨類負極的兩個致命缺陷:低能量密度(理論比容量 372mAh·g–1)和安全隱患(“析鋰”現象)令其無法適用于動力電池。因此,尋找一種新型高容量、安全性好和長循環的材料來替換石墨類負極材料成為動力鋰離子電池進一步發展的關鍵。


硅因其超高比容量(理論值4200mAh·g–1)、低嵌鋰電位(300%),使活性材料粉化、電極內電接觸失效以及新固相電解質層SEI重復生成,最終導致循環性能迅速衰退。為改善硅負極循環穩定性,研究者們做了各種改性。


近年來,一種已經產業化的工業原料硅氧化物(SiOx,0


本文從SiOx的結構與電 化學儲鋰機制方面出發,介紹了SiOx的結構與電化學性能的關系,闡明了SiOx存在的主要挑戰問題,并歸納了近期研究者們對硅氧化物負極的主要改進思路,最后對 SiOx負極材料未來發展方向進行了展望。


1 SiOx結構


SiOx材料早在幾十年前就已被人們所認知并在許多功能性應用中實現商業化,如利用其半導體屬性而廣泛運用于各種光電子器件,之后才被運用于鋰離子電池負極材料。因為SiOx為一種無定形結構,且在SiOx中Si的化合價態存在多樣性(Si0、Si2+、 Si4+等),一些常規測試技術手段如X射線衍射 (XRD),X射線光電子譜(XPS)和X射線Raman 衍射等分辨率有限,僅能提供無定型SiOx的平均結構信息,因此,對于SiOx微觀結構的確定長期以來一直是個難題。隨著科技的不斷進步,對SiOx的結構認識也在不斷深入。


最早,出現有兩種經典的結構模型:隨機鍵合模型(Random-bonding,RB模型)和隨機混合模型(Random-mixture,RM模型)。其中RB模型指出SiOx的結構為一種由Si—Si鍵與Si—O鍵形成的連續隨機分布并貫穿整個網絡的單相結構;而RM模型則認為SiOx的結構是一種由超小范疇(<1nm)的Si和的SiO2混合物組成的雙相結構。



2003年,Wieder等提出了一種介于上述兩種模型的“界面團簇混合型”模型(Interface Clusters Mixture Model),如圖1所示。圖中黑色區域代表Si團簇,白色區域代表SiO2團簇,而介于二者之間的淺灰色區域為 SiOx過渡區域。該模型認為SiOx是由納米Si團簇、納米SiO2團簇以及環繞于二者之間的SiOx界面區域構成。該SiOx界面的結構與普通的超薄Si/SiO2界面層相當,但由于SiOx中Si及SiO2團簇尺寸小于2 nm, 而該界面區域的體積較大,因此不能忽視。


同年,Schulmeister研究組通過TEM對SiO進行研究,也得出同樣的結論,在無定型Si相和無定型SiO2相之間存在過渡區域,且約占據總含量的20%~25%。



最近,Akihiko研究組在配有同步高能X射線衍射(HEXRD)設備下,利用Angstrom束電子衍射技術(ABED)對無定型SiO結構進行表征。結果證明:除了理論上存在的無定型Si和無定型SiO2團簇之外,在Si/SiO2相界面區域確實存在SiO(Si:O比≈1:1) 相間邊界層。這一發現提供了令人信服的非晶一氧化硅原子尺度不均勻分布的實驗證據,此外,他們通過計算機模擬構建出了1種異質結構模型,如圖2所示, 內部部分對應于1 個非晶態的Si團簇,外部部分是非晶態的SiO2基質。藍色、紅色和綠色圓球分別表示非晶態SiO2中的Si和O以及Si簇中的Si,該模型很好地解釋了非晶SiO材料的獨特結構和性能。


2 SiOx儲鋰機制和電化學性能


由前面得知,SiOx并非由單一相組成,而是由許多均勻分布的納米級Si團簇、SiO2團簇以及介于Si/SiO2兩相界面之間的SiOx過渡相組成,因此其儲鋰機理非常復雜。Miyachi等發現SiO首次鋰化產物為 LixSi、鋰硅酸鹽和Li2O,其中部分鋰硅酸鹽具有可逆性。Jun Kyu Lee等認為SiO嵌鋰形成Li2O和LixSi,SiO2嵌鋰形成Li4SiO4和 LixSi。而Chen等認為SiO2嵌鋰過程中不僅形成Li4SiO4和LixSi,還形成Li2O和 Li2Si2O5。


Ohzuku等證明SiO在首次嵌鋰過程中形成 Li4SiO4 和 LixSi,其中有部分 SiO2不參與反應。Yamamura 等發現結晶性的SiO2不具備嵌鋰電化學活性。



2016 年,Yasuda 等運用Li-Si-O三元相圖,從熱力學角度分析了SiO 首次脫嵌鋰的演變過程,具體如圖3所示:(1)點①–⑦,初始階段SiO中的SiO2組分連續鋰化為 Li2Si2O5、Li2SiO3、Li4SiO4且與Si共存;(2)點⑦–?,Si連續合金化為Li12Si7、Li7Si3、Li13Si4并與Li4SiO4共存;(3)點?–?,Li4SiO4分解成Li13Si4和Li2O; (4)點?–?,Li13Si4逐步鋰化形成 Li22Si5并與Li2O共存;(5)點?,為鋰沉積過程。根據上述鋰化過程, 可以得出SiO 在不同平衡條件下的理論容量和首次充放電效率,平衡點?的理論容量和首次充放電效率分別為1480mAh·g–1和 70.9%,平衡點?的理論容量和首次充放電效率分別為 2 584 mAh·g–1和 81.0%,平衡點?的理論容量為3283 mAh·g–1、首次充放電效率為 84.4%。


SiOx負極材料的電化學性能與其儲鋰機制息息相關。Jung等通過第一性原理分子動力學模擬得出,在充放電過程中,Li2O基質環繞在LixSi核周圍可充當著鋰離子的快速擴散通道,因此嵌鋰時SiOx富含的Li2O基質能夠使其在循環和倍率性能方面最優化,此外,LixSi核周圍的Li2O和Li4SiO4基質還可以有效的緩沖體積膨脹。然而,Li2O和Li4SiO4相為惰性相,其產生消耗了電解液 以及從正極脫出的Li,且此過程不可逆,造成首次可逆容量的嚴重丟失。SiOx材料的電化學性能與其氧含量(x值)也密切相關,



Jang等探究了SiOx負極材料的電化學性能隨氧含量(x值)的變化,如圖4所示,隨著x值的增大,電極材料的循環穩定性增加,但是首次Coulomb效率和容量降低。 因此,概括來講,對于SiOx材料,其中的氧有利也有弊。一方面,隨著x值升高,電化學活性儲鋰相(a-Si)減少,不可逆相Li2O和 Li4SiO4增加,因此比容量逐漸下降,首次Coulomb效率降低;然而從另一方面來講,生成的不可逆Li2O相增加,動力學加快,并且伴隨著體積膨脹產生的應力得到有效 釋放,因此電化學性能得到提升。


3 SiOx存在的主要問題


3.1 SiOx循環性能的衰減


在硅/鋰合金化過程中,伴隨著巨大的體積效應。雖然O原子的存在會在原位生成惰性緩沖基質相,但是總體體積效應仍然較大,產生的機械應力會使得活性材料粉化并與集流體之間發生電接觸失效;另外,SiOx的本征電導率低,不利于材料電化學性能的發揮;此外,SiOx負極與有些電解液的匹配性也不是很好,易被鋰鹽分解產生的微量HF 腐燭等。由于以上因素的共同影響,最終導致了SiOx負極材料的循環性能嚴重衰減。


3.2 SiOx首次Coulomb效率低


在電池運行過程中,由于有機電解質熱力學的不穩定性,使其在低電位如負極工作電位處會發生分解而在電極表面形成固體電解質界面相(SEI),這種不可逆SEI的形成消耗了電解液和正極材料脫出的Li,導致活性正極材料容量的明顯損失和低的第一循環Coulomb效率(CE)。


與鋰離子嵌入式反應負極材料(如石墨)相比,SEI層的生成對于高容量合金化負極材料(包括硅基、錫基、金屬氧化物等)則更為嚴重。此外,在首次嵌鋰時,SiOx中的氧原子也會和電解液中的Li+發生不可逆反應生成惰性相的Li2O和Li4SiO4,再次加劇了其首次不可逆容量, 最終結果導致SiOx負極材料首效低的問題,從而嚴重制約了SiOx負極材料在高比能鋰離子電池中的應用。


4 SiOx負極材料的改性


由前面可知,雖然SiOx材料較單質Si擁有更好的循環穩定性,然而將其實際運用于鋰離子電池負極仍然存在較多問題。為了改善 SiOx負極材料的電化學性能,近年來研究者們進行了大量的工作對其進行改性和優化,歸納起來主要有以下幾部分:SiOx的歧化、與其它材料的復合、預留緩沖空間、預鋰化技術的運用以及其它改性措施。


4.1 SiOx的歧化


人們通常使用的固體SiOx是由無定型Si和各種價態的硅氧化物構成的,在高溫下,其熱力學性質非常不穩定,容易發生歧化生成 Si和SiO2。


Mamiya等研究發現,將無定型SiO置于 850℃惰性氣氛中高溫煅燒發生歧化反應,會形成平均粒徑為4~5nm的納米單晶硅,且隨著煅燒時間的延長,納米晶硅的數量逐漸增加,但顆粒尺寸保持不變。若升高煅燒溫度至1000 ℃以上,單晶硅的生成速率則迅速加快,顆粒尺寸也逐漸變大。在納米晶硅生成的同時伴隨著Si4+的逐漸增加,Si+、Si2+和Si3+的逐漸減少,其首次嵌鋰平臺逐漸向單質Si靠近,而SiOx的電化學性能逐漸提升。


Park等研究發現,SiOx負極材料在1000 ℃歧化后比在800℃歧化后具有更好的循環性和可逆性,生成的納米晶Si均勻分散在無定型SiOx基質中。但是將歧化溫度進一步提高到1200 ℃,則產物電化學性能開始下降,猜測原因是過量的Si4+無定型硅氧化 物的生成阻礙了Li+的傳輸。


同樣,Hwa等觀察到,在1200℃熱處理的歧化SiOx幾乎沒有容量,因為納米晶Si被無定型SiO2緊緊包圍而無法與Li+發生反應,但是在歧化后通過高能球磨方法可將納米晶Si和無定型SiO2暴露出來,并因此改善其電化學性能。


雖然歧化是一種可以通過改變SiOx中的化學成分和增強其內部緩沖基質進而提高其循環性能的有效方法,但是其仍需要進行進一步的外處理來“激活”,如高能球磨和刻蝕等來破壞其外部致密的無定型硅氧化物包覆基質,并將內部納米晶硅暴露出來。


4.2 與其他材料的復合


碳材料因具有穩定性好、體積變化小和導電性優異等優點而常被用于和SiOx復合。將碳材料作復合材料,首先可以提升SiOx的導電性,其次可充當惰性緩沖層減小其體積效應,此外,如最常用的手法碳包覆等還能有效的降低SiOx與電解液的接觸面積,從而提高Coulomb效率。


根據復合碳材料的不同,可將其概括為兩類:SiOx與傳統碳材料和SiOx與新型碳材料的復合。傳統炭材料比較常見,如有石墨、炭黑和無定形碳等。而新型炭材料則是后興起的具有特殊結構或功能碳材料,如碳納米管、碳納米纖維和石墨烯等。相對比,新型碳材料由于具備超大的比表面積和多維導電網絡, 對SiOx負極的電化學性能提升更為顯著。


另外,還可以將SiOx與金屬進行復合。一方面,金屬材料具有良好的導電性,可增強硅合金材料的動力學性能;另一方面,金屬可以充當支撐骨架,改善硅體積效應,因此能有效改善SiOx負極的電化學性能。


Miyachi等研究發現25%的Fe、Ti或Ni摻雜改性的SiO首次Coulomb效率得到顯著提 升,高達84%~86%,同時可逆脫嵌鋰容量得到提高,通過XPS測試表明金屬元素并不參與反應,但摻雜后的Si元素在可逆脫鋰過程中化合價變化波動大 (由0價到+4價再到 0價)。Tang等研究超精細Ni納米顆粒復合 SiO2時發現,Ni納米顆粒尺寸越小, SiO2/Ni的脫嵌鋰容量越高,且循環穩定性越好。當然還有一些其它材料復合,如 Zhang等通過球磨法制備出Sn2Fe@SiOx復合材料,大幅度提高了SiOx鋰化反應的可逆性,其首效高達78%,且在200 mA·g–1電流下,具有700 mAh·g–1的高穩定容量,Coulomb效率超過99%,在1000 mA·g–1的高倍率下超長壽命可超過1000個循環。


4.3 預留緩沖空間


SiOx在脫嵌鋰過程中仍然經歷了較大的體積膨脹,因此通過提供額外的自由空間如形成多孔或中空核-殼結構等,可有效地緩解其體積膨脹。此外,多孔開放的結構也有利于Li+的快速輸運,從而提高其倍率性能。


Lee等采用電偶置換反應和金屬輔助電化學蝕刻相結合的方法合成三維多孔SiO材料,首先通過電偶反應在SiO表面沉積起催化劑作用的納米銀顆粒,然后對沉積銀的SiOx顆粒進行電化學蝕刻,合成多孔SiO顆粒,該材料表現出優異的電化學性能,包括高的比容量(1520 mAh·g–1)、穩定的循環性能(50圈,1490mAh·g–1)和高的倍率性能(3C,74%)。與傳統的通過HF刻蝕SiO2從而得到多孔Si負極材料的方法相反,Yu等對經900℃熱歧化處理后的SiO進行NaOH 處理,結果是將晶體Si刻蝕而SiOx保留下來,從而得到了多孔SiOx材料,通過控制刻蝕時間可得到不同刻蝕程度的多孔SiOx材料,且該負極材料同樣也表現出優異的電化學性能,0.2C下循環100圈后,可逆容量 穩定在1240 mAh·g–1以上。


近期,Park等報道了一種通過油水模板法制備碳包覆多孔SiOx材料用于高容量儲鋰材料,該負極材料具有730 mAh·g–1的高容量同時擁有超高的循環穩定性即100次循環電極材料沒有明顯的尺寸變化。


雖然目前制備多孔SiOx的方法眾多,然而,可以系統規律性對多孔結構以及孔半徑及分布的控制還未成型,且通常對多孔或中空結構SiOx負極材料的制備步驟繁瑣,產量低,外加在去除模板或刻蝕過程中會造成部分結構的坍塌,因此對多孔SiOx的制備及商業化應用還需更深入研究,以便達到簡單 高效的制備目的。


4.4 預鋰化技術


鋰離子電池硅負極材料的預鋰化是彌補其表面形成固體電解質界面相(SEI)所造成的鋰損失的一種重要策略。對于SiOx負極材料,由于氧的引入加大了對電解質中和由正極材料釋放的鋰離子消耗,造成鋰的嚴重損失,因此預鋰化技術對于硅氧化物 (SiOx)負極材料的性能改善尤為顯著。


預鋰化技術概括來說可分為以下幾類:


(1) 簡單的物理混合,如Kulova等通過硅和金屬鋰在電解液中的直接接觸方法緩減硅負極首次不可逆容量損失;


(2) 穩定的金屬鋰粉,如Forney等在電池組 裝過程中,將穩定的鋰金屬粉末均勻的分散在硅碳負極極片表面,通過控制鋰金屬粉末的用量和調節壓力對高容量硅/碳納米管(Si-CNT)負極進行有效預鋰,他們用該方法消除了20%~40%次不可逆容量損失,并使得高能量密度NCA/Si-CNT 全電池在20%深度放電時達到>1000次循環;


(3) 短路法,如Kim等采用電接觸短路法對 SiOx(x~1)極片進行預鋰化,通過調節短路導線電阻及短路時間實現對首次Coulomb 效率的精確調控,研究發現100 ? 電阻短路30min可以使首次Coulomb效率從73.6%提升至 94.9%;


(4) 預鋰化添加劑,如Cui研究組采用冶金法使熔融Li與SiO或SiO2反應形成 LixSi/Li2O復合材料,由于Li—O鍵相比于Li—Si更穩定,Li2O包覆的LixSi具有高度的室溫穩定性,因此可作為高穩定性預鋰化添加劑用于與硅氧化物 負極材料復合提升首次充放電效率。最近,Cui組又研發了一種更簡便的方法將合成的Li22Z5合金和 Li22Z5-Li2O復合材料(Z=Si、Ge、Sn等)作為預鋰化試劑對相應地Ⅳ主族元素進行預鋰化,結果表明,此方法大幅度地降低首次不可逆容量的損失,令材料容量接近理論比容量。


雖然到目前為止擁有的預鋰化技術手段豐富多樣,但是仍然存在一定的問題。短接技術最為簡便,可精準調控預鋰化程度,但是其反應條件必須嚴格控制氧氣和水的含量,較適用于實驗室階段的應用而無法實現大規模應用。穩定的金屬鋰粉技術,可實現較大規模應用,但是也需要嚴格控制實驗條件,對儀器設備要求高,且存在一定的安全隱患,尤其是在金屬鋰粉的高速混料過程中。通過添加預鋰化添加劑可以有效提高 SiOx負極材料的首次Coulomb效率,但是傳統的預鋰化試劑存在可燃性較高、化學穩定性較差和與其他電極組成成分(如電解液、粘結劑以及其他添加劑等)相容性差等問題,容易導致安全隱患的發生。


近年來,高穩定性且高效新型預鋰化添加劑成為研究熱點,然而,對其穩定性和與其他材料的相容性還需進一步的提升,此外,其合成成本仍需進一步的降低。


4.5 其它改性措施


除活性材料之外,其它如導電劑、粘結劑和電解液等也是電池重要組成部分,對其他組分的改性也可以有效的改善SiOx負極的電化學性能。


SiOx材料電導率低,適量的導電劑可以保證電子通過電極片流通進入外電路從而極大地改善其電化學性能。和 SiOx電極材料一樣,導電劑也在一直不斷地進步,從最開始的零維點狀導電劑炭黑,到 后來的一維纖維狀的導電碳纖維和碳納米管,再到最近火熱的二維片狀石墨烯材料,更進一步的增加了電極材料顆粒之間的接觸,提高了導電性。近期有研究表明,某些特殊形貌的導電劑在電極片中可起到穩定電極結構的作用,且不同的電極體系可選 擇各自最適應的導電劑。


巨大的體積效應容易使SiOx基負極電極結構坍塌從而失去電接觸,粘結劑的使用可以有效的保證電極結構的完整性。傳統粘結劑聚偏氟乙烯(PVDF)與SiOx電極的工作性能很差,因此許多更加高效的新型粘結劑逐漸被人們研發和利用,如羧甲基纖維素鈉(CMC)、聚丙烯酸(PAA)、聚乙烯醇(PVA)和聚酰亞胺(PI)等,這些結合劑可通過與 SiOx表面的SiO2層形成牢固的氫鍵或共價鍵達到增強與負極材料的粘附和結合的效果,從而提高了循環壽命。


最近,許多更加優異的粘結劑被研發出來,如Wang等報道的高拉伸導電膠(CG),Munaoka等研發 的自愈聚合物(SHP),Zhu等研發的交聯丙烯酰胺 (c-PAM)等,更加高效地保證了SiOx材料的循環穩定性。


在充電過程中,電解質溶液的還原分解會導致SEI層的生長,不同的電解液添加劑直接影響所形成的SEI層物化性質(致密度、韌性和穩定性等)不同,因此研發高效的電解液添加劑對SiOx負極的電化學性能提升非常重要。目前使用較多一些電解液添加劑主要有雙氟磺酰亞胺鋰鹽(LiFSI)、氟代碳酸 乙烯酯(FEC)、碳酸次乙酯(EC)、碳酸亞乙烯酯(VC)和硅氧烷等,這些電解液添加劑可以在電極材料表面形成致密鈍化保護膜,如 LiF、Li2O、一些Li+導電鹽和含氟類聚合物等,從而改善電池的電化學性能。


雖然電解液添加劑的使用能顯著的提高SiOx負極材料的容量保持率和Coulomb效率,然而其在開路電壓下對電極材料的接觸動力學及其對結構影響的本質仍然令人費解,因此還需更進一步的探究。


5 結論與展望


SiOx材料是一種極具有潛力的鋰離子電池負極材料,提供高容量的超細納米Si團簇均勻分散在SiOx基質中,且在首次嵌鋰過程中,原位生成的Li4SiO4和Li2O惰性相包覆在納米Si團簇外圍,隔絕了Si與電解液的接觸,起到了緩沖體積效應和保護電化學活性的納米Si團簇的雙重作用,因此令其綜合具備高容量和長循環等性能。


SiOx 負極材料的電化學性能與x值緊密相關,隨著x值升高,一方面,電化學活性儲鋰相(a-Si)減少,生成的不可逆相Li2O和 Li4SiO4增加,因此比容量逐漸下降,首次Coulomb效率也逐漸降低;然而另一方面,隨著生成的不可逆Li2O相增加,動力學加快,伴隨著體積膨脹產生的應力得到有效釋放,因此電化學性能得到提升。


雖然SiOx負極材料具有很強的優勢,然而實現實用化水平仍然存在較多問題,最突出的有容量衰減嚴重和首次Coulomb效率低兩大問題。因此,為了進一步提高SiOx電極材料的實用性,大量的研究工作仍然迫切需求。


其一,簡化優化SiOx材料的改性方案并降低其合成成本;


其二,研發更加成熟和 實用的預鋰化技術;


其三,針對SiOx材料匹配出更加合適的導電劑,黏結劑和電解液添加劑等。


相關產品

  1. <form id="ejezu"></form>

  2. 主站蜘蛛池模板: 成人欧美一区二区三区在线观看 | 色综合99久久久无码国产精品| 肉大榛一进一出免费视频| 格尔木市| 马尔康县| 久久精品国产99精品国产亚洲性色| 泾阳县| 开鲁县| 丰满岳乱妇一区二区三区| 人人妻人人澡人人爽久久av| 龙海市| 天美麻花果冻视频大全英文版 | 少妇无码一区二区三区| 射洪县| 国产精品久久久久久久久久久久人四虎 | 特级西西人体444www高清大胆| 亚洲最大的成人网站| 日本免费视频| 松江区| 熟妇高潮精品一区二区三区| 国产亚洲精品久久久久久无几年桃 | 国产探花在线精品一区二区 | 国产一区二区精品丝袜| 色五月激情五月| 精品国产成人亚洲午夜福利| 人妻aⅴ无码一区二区三区| 鸡东县| 精品人妻无码一区二区色欲产成人 | 子洲县| 兰溪市| 亚洲国产成人精品女人久久久| 久久久久无码国产精品一区| 欧美 日韩 人妻 高清 中文| 桃源县| 亚洲熟女一区二区三区| 津市市| 娇妻玩4p被三个男人伺候电影| 国产乱xxⅹxx国语对白| 中文字幕精品久久久久人妻红杏1 精品人妻无码一区二区三区 | 中国女人做爰视频| 徐水县| 中文字幕精品无码一区二区| 厦门市| 泰安市| 成人国产片女人爽到高潮| 湘乡市| 久治县| 新郑市| 深州市| 宁安市| 左权县| 欧美性大战xxxxx久久久| 泸水县| 国产福利视频| 精品国产18久久久久久| 国产成人无码一区二区在线播放| 欧洲精品码一区二区三区免费看 | av无码一区二区三区| 香蕉影院在线观看| 国产麻豆成人传媒免费观看| 欧美成人一区二区三区| 中文字幕人成乱码熟女香港| 99热这里有精品| 海晏县| 国产成人精品一区二区三区| 国产偷人妻精品一区| 少妇粉嫩小泬喷水视频www| 久久久久久久97| 国产成人三级一区二区在线观看一 | 康马县| 久久久久99精品国产片| 伊人久久大香线蕉综合网站| 应城市| 伊人久久大香线蕉av一区| 岳阳县| 张掖市| 白水县| 石渠县| 和硕县| 青草视频在线播放| 国产精品久久久久久久久久免费看| 国产农村妇女精品一二区| 国产成人精品无码免费看夜聊软件| 国产婷婷色综合av蜜臀av| 农安县| 萍乡市| 午夜福利视频| 欧美人妻日韩精品| 人妻无码中文久久久久专区| 国产精品18久久久| 欧美乱大交| 平安县| 衡阳县| 兴安盟| 国产成人精品免高潮在线观看| 乱熟女高潮一区二区在线| 沅江市| 大肉大捧一进一出好爽动态图| 育儿| 华池县| 成人做爰a片免费看黄冈| 精品人人妻人人澡人人爽牛牛| 好吊色欧美一区二区三区视频| 开封县| 国产真实伦对白全集| 欧美性生交大片免费看| 麻豆国产一区二区三区四区| 樟树市| 亚洲视频一区| 成全我在线观看免费观看| 人妻妺妺窝人体色www聚色窝| 樱桃视频大全免费高清版观看| 久久综合久久鬼色| 富锦市| 亚洲 小说区 图片区 都市| 北安市| 靖安县| 商水县| 施秉县| 麻豆人妻少妇精品无码专区| 陈巴尔虎旗| 清涧县| 民丰县| 巴南区| 巴彦县| 亚洲女人被黑人巨大进入| 中文成人无字幕乱码精品区| 中国女人做爰视频| 精品国产乱码久久久久久婷婷| 无锡市| 蜜桃一区二区三区| 久久久国产精品黄毛片 | 夏河县| 湘阴县| 成av人片一区二区三区久久| 拍真实国产伦偷精品| 免费人妻精品一区二区三区| 国产国语亲子伦亲子| 精品无码人妻一区二区免费蜜桃 | 成人国产片女人爽到高潮| 人人妻人人澡人人爽国产一区| 西西444www无码大胆| 精品黑人一区二区三区久久| 察哈| 亚洲欧美一区二区三区在线| 雷山县| 曰本无码人妻丰满熟妇啪啪| 日本不卡一区二区三区| 修水县| 风流少妇按摩来高潮| 山西省| 吐鲁番市| 石柱| 巴中市| 最好看的2018中文在线观看| 国产精品久免费的黄网站 | 欧美一区二区三区成人久久片| 国产午夜精品一区二区三区四区 | 新昌县| 成全影视大全在线观看| 三年成全免费观看影视大全 | 绥德县| 成人性生交大片免费卡看| 金塔县| 荥经县| 新巴尔虎左旗| 亚洲国产精品久久人人爱| 团风县| 西丰县| 五月丁香啪啪| 贡嘎县| 成全动漫视频在线观看免费高清| 山阴县| 欧美激情性做爰免费视频| 国产成人三级一区二区在线观看一| 成全高清免费完整观看| 熟妇女人妻丰满少妇中文字幕| 性xxxx视频播放免费| 欧美乱妇日本无乱码特黄大片| 国产探花在线精品一区二区| 国产国语亲子伦亲子| 国产免费一区二区三区在线观看| 欧性猛交ⅹxxx乱大交| 三门县| 欧美又粗又大aaa片| 怡红院av亚洲一区二区三区h| 久久亚洲熟女cc98cm| 六盘水市| 府谷县| 国产精品99精品久久免费| 国模无码一区二区三区| 亚洲啪av永久无码精品放毛片| 当阳市| 欧美疯狂做受xxxxx高潮| 桐乡市| 金山区| 蜜桃av色偷偷av老熟女| 威信县| 宜宾市| 嵩明县| 黄梅县| 色五月激情五月| 中文字幕av一区| 久久久久99人妻一区二区三区| 钦州市| 闵行区| av电影在线观看| 中文字幕日韩人妻在线视频| 中文字幕一区二区三区精华液| 永城市| 美女扒开尿口让男人桶| 久久久久久久久久久国产| 德安县| 国产卡一卡二卡三无线乱码新区| 99精品欧美一区二区三区| 国产精品免费无遮挡无码永久视频| 与子敌伦刺激对白播放的优点 | 日韩av无码一区二区三区不卡 | 永昌县| 望奎县| 乳尖春药h糙汉共妻| 精品国产乱码久久久久久婷婷 | 国产精品51麻豆cm传媒| 欧美三级欧美成人高清| 东明县| 夜夜穞天天穞狠狠穞av美女按摩| 罗城| 白河县| 呼图壁县| 封开县| 少妇被又大又粗又爽毛片久久黑人| 沙湾县| 特级西西人体444www高清大胆 | 欧美日韩精品久久久免费观看| 杭锦后旗| 宁城县| 长武县| 裕民县| 永昌县| 合川市| 和田市| 菏泽市| 茶陵县| 南岸区| 赫章县| 桐庐县| 国产精品麻豆成人av电影艾秋 | 无码少妇一区二区| 国产伦精品一品二品三品哪个好| 青河县| 东台市| 欧美老熟妇又粗又大| 狠狠综合久久av一区二区| 九一九色国产| 乳源| 日韩精品无码一区二区三区久久久| 亚洲精品97久久中文字幕无码| 武强县| 白沙| 峨眉山市| 亚洲精品喷潮一区二区三区 | 女人被狂躁60分钟视频| 蜜桃成人无码区免费视频网站| 弋阳县| 人妻少妇一区二区三区| 广河县| 天天综合天天做天天综合| av免费网站在线观看| 成全影视大全在线观看国语| 新野县| 国产欧美一区二区精品性色| 搜索| 凤台县| 色综合天天综合网国产成人网 | 阿克| 精品国产av 无码一区二区三区| 三江| 南昌市| 影音先锋男人站| 平山县| 久久精品www人人爽人人| 紫云| 宾阳县| 腾冲县| 欧美无人区码suv| 蓬莱市| 滨州市| 国偷自产视频一区二区久| 泰宁县| 日本特黄特色aaa大片免费| 荣成市| 久久午夜无码鲁丝片午夜精品 | 成全视频免费高清| 久久av无码精品人妻系列试探| 招远市| 国产精品国产三级国产专区53 | 亚洲色偷偷色噜噜狠狠99网| 骚虎视频在线观看| 国产精品久久午夜夜伦鲁鲁| 成全高清免费观看mv动漫| 激情 小说 亚洲 图片 伦 | 午夜福利电影| 乌什县| 自拍偷在线精品自拍偷无码专区| 人妻少妇被猛烈进入中文字幕| 国产精品伦一区二区三级视频| 精品国产一区二区三区四区阿崩| 国产成人精品av| 比如县| 伊人久久大香线蕉av一区| 崇仁县| 无码国产伦一区二区三区视频| 曲麻莱县| 阳春市| 普定县| 沙坪坝区| 太谷县| 灵丘县| 国产精品久久久久久久久久久久| 马山县| 平远县| а√天堂www在线天堂小说| 欧美与黑人午夜性猛交久久久| 余干县| 国产免费无码一区二区| 日本在线观看| 欧美老熟妇又粗又大| 全部孕妇毛片丰满孕妇孕交| 久久综合久久鬼色| 国精品人妻无码一区二区三区喝尿 | 免费人妻精品一区二区三区| 响水县| 亚洲精品成a人在线观看| 成人片黄网站色大片免费毛片 | 手机福利视频| 精品国产精品三级精品av网址| 临汾市| 国产精品久久一区二区三区| 女女互磨互喷水高潮les呻吟| 人妻无码中文久久久久专区| 国产成人精品一区二区三区视频| 亚洲欧美乱综合图片区小说区| 国产成人精品一区二区三区视频 | 亚洲视频一区| 午夜精品久久久久久久| 碌曲县| 国产精品久久777777| 男人的天堂在线视频| 武冈市| 日本不卡一区二区三区| 庆元县| 全州县| 国产精品成人一区二区三区| 安新县| 库伦旗| 柏乡县| 霍林郭勒市| 江安县| 莱阳市| 国产精品亚洲一区二区无码| 阿克陶县| 农安县| 无码人妻少妇色欲av一区二区| 成都市| 国产乱人伦精品一区二区 | 保德县| 禹城市| 久久久久久亚洲精品中文字幕| 堆龙德庆县| 邯郸市| 中文字幕亚洲无线码在线一区 | 精品国产乱码久久久久久1区2区| 随州市| 日韩熟女精品一区二区三区| 健康| 万宁市| 亚洲熟女乱色综合亚洲小说| 久久久久成人精品免费播放动漫 | 无码精品一区二区三区在线 | 成全视频大全高清全集在线| 99精品视频在线观看免费| 国产精品人妻| 阿克苏市| 97精品超碰一区二区三区| 成人区精品一区二区婷婷| 黑人巨大精品欧美一区二区免费| 久久精品国产精品| 邹平县| 韩国三级中文字幕hd久久精品| 中文字幕无码毛片免费看| 高州市| 久久午夜夜伦鲁鲁片无码免费| 无码一区二区三区视频| 中文毛片无遮挡高潮免费| 麻豆精品| 欧美一性一乱一交一视频| 南华县| 天天躁日日躁aaaaxxxx| 538在线精品| 孙吴县| 亚洲国精产品一二二线| 宾阳县| 肥老熟妇伦子伦456视频| 革吉县| 谢通门县| 免费国偷自产拍精品视频| 精国产品一区二区三区a片 | 姚安县| 十堰市| 久久精品aⅴ无码中文字字幕重口| 成人午夜视频精品一区| 毛片无码一区二区三区a片视频 | 毛片免费视频| 久久er99热精品一区二区| 华宁县| 成全免费高清大全| 欧美 日韩 人妻 高清 中文| 伊人久久大香线蕉av一区| 策勒县| 色一情一乱一伦一区二区三区 | 日产无码久久久久久精品| 国内精品一区二区三区| 欧美精品在线观看| 亚洲精品久久久久avwww潮水| 国产乱码精品一区二区三区中文| 精品无码久久久久久久久| 欧美成人午夜无码a片秀色直播| 景东| 一边吃奶一边摸做爽视频| 亚洲人成在线观看| 女人被狂躁60分钟视频| 眉山市| 亚洲最大的成人网站| 免费又黄又爽又色的视频| 国产精品成人va在线观看| 佛学| 石家庄市| 亚洲欧美国产精品久久久久久久| 欧美性猛交aaaa片黑人| 亚洲色偷偷色噜噜狠狠99网| 吉首市| 欧美性生交xxxxx久久久| 临夏市| 泰来县| 极品新婚夜少妇真紧| 尤溪县| 国精一二二产品无人区免费应用| 普安县| 久久99热人妻偷产国产| 国产精品伦一区二区三级视频| 延吉市| 久久99精品久久只有精品| 97精品超碰一区二区三区| 国产偷窥熟女精品视频大全| 国产乱人对白| 和田市| 国産精品久久久久久久| 无码一区二区波多野结衣播放搜索| 免费人妻精品一区二区三区| 欧美午夜精品久久久久免费视| 读书| 延长县| 黑人巨大精品欧美一区二区免费| 国产人妻大战黑人20p| 桐梓县| 三年大片高清影视大全| 集安市| 国产精自产拍久久久久久蜜| 德州市| 黑巨茎大战欧美白妞| 北宁市| 永安市| 新邵县| 巴南区| 兴安县| 激情 小说 亚洲 图片 伦 | 国产激情一区二区三区| 三明市| 庆阳市| 旌德县| 东丰县| 欧美精品在线观看| 泰顺县| 国产伦精品一区二区三区免费| 97人妻精品一区二区三区| 广灵县| 狠狠cao日日穞夜夜穞av| 阿勒泰市| 宣化县| 久久精品www人人爽人人| 樱花影院电视剧免费| 大洼县| 欧美又粗又大aaa片| 免费观看全黄做爰的视频| 亚洲精品97久久中文字幕无码| 潜山县| 双城市| 国产情侣久久久久aⅴ免费| 国产亚洲色婷婷久久99精品| 平阳县| 亚洲第一成人网站| 威远县| 高清欧美性猛交xxxx黑人猛交| 蜜臀av一区二区| 庄河市| 国产做爰xxxⅹ久久久精华液 | 封开县| 国产老妇伦国产熟女老妇视频| 欧美成人在线视频| 日韩高清国产一区在线| 成全观看高清完整免费大全 | 亚洲人成色777777精品音频| 巢湖市| 久久久久国产精品无码免费看| 革吉县| 欧美丰满老熟妇aaaa片| 龙口市| 昭平县| 化州市| 滦南县| 铜梁县| 一区二区三区视频| 亚洲欧美一区二区三区| 亚洲精品成a人在线观看| 吉水县| 三年片在线观看免费观看高清电影| 狂野少女电视剧免费播放| 芦山县| 天天躁日日躁狠狠很躁| 驻马店市| 又大又粗又爽18禁免费看| 国产精品美女久久久久| 吴江市| 欧美色综合天天久久综合精品 | 鹿邑县| 襄汾县| 无码aⅴ精品一区二区三区| 宣化县| 国产欧美一区二区精品性色| 国产无套中出学生姝| 欧美精品乱码99久久蜜桃| 92久久精品一区二区| 成熟人妻av无码专区| 最好看的2018中文在线观看| 广州市| 国产精品无码天天爽视频| 彭阳县| 欧美色综合天天久久综合精品| 99精品视频在线观看| 松原市| 巴青县| 人妻激情偷乱视频一区二区三区| 澎湖县| 欧美日韩在线视频| 国精一二二产品无人区免费应用| 夜夜躁狠狠躁日日躁| 石景山区| 渝北区| 济源市| 上饶市| 阜阳市| 乌拉特中旗| 同江市| 香蕉影院在线观看| 国产午夜精品一区二区三区嫩草| 久久久精品中文字幕麻豆发布| 沂水县| 宁城县| 手机福利视频| 亚洲熟女一区二区三区| 今天高清视频免费播放| 成全电影大全在线观看国语版 | 蜜桃一区二区三区| 耿马| 稻城县| 麻豆亚洲一区| 国产精品久久久久久久免费看| 66亚洲一卡2卡新区成片发布| 阳朔县| 成年免费视频黄网站在线观看| 布尔津县| 东阿县| 欧美性生交大片免费看| 国产女人18毛片水真多| 国产精品毛片va一区二区三区| 佛教| 熟女肥臀白浆大屁股一区二区| 羞羞视频在线观看| 南召县| 久久久久久毛片免费播放 | 亚洲午夜精品一区二区| 成全在线观看高清完整版免费动漫| 长顺县| 中文字幕人妻无码系列第三区 | 乌审旗| 日本少妇高潮喷水xxxxxxx| 日韩一区二区三区精品| 千阳县| 国产农村妇女精品一二区| 泰兴市| 腾冲县| 禄劝| 日本电影一区二区三区| 亚洲男人天堂| 都江堰市| 景谷| 宁陵县| 元氏县| 老色鬼久久av综合亚洲健身| 国产成人精品亚洲日本在线观看| 会理县| 国产成人精品aa毛片| 景宁| 满城县| 特黄aaaaaaaaa毛片免费视频| 元谋县| 国产熟女一区二区三区五月婷| 托克逊县| 曲沃县| 久久99精品久久只有精品| 国产精品99精品久久免费| 天美麻花果冻视频大全英文版| 日韩精品一区二区三区| 色一情一区二| 国产真人做爰毛片视频直播 | 宜兴市| 99国产精品久久久久久久成人热| 国产精品无码一区二区桃花视频| 茂名市| 国产精品毛片一区二区三区| 国产精品毛片久久久久久久| 女人脱了内裤趴开腿让男躁| 亚洲熟妇色xxxxx欧美老妇| 精品国产乱码一区二区三区| 汉寿县| 亚洲熟妇色xxxxx欧美老妇| 人与嘼交av免费| 武清区| 常宁市| 成全电影大全在线观看| 镇江市| 尤物视频网站| 亚洲电影在线观看| 灯塔市| 日韩熟女精品一区二区三区| 国产午夜三级一区二区三| 艳妇乳肉豪妇荡乳av无码福利| 正阳县| 德兴市| 新兴县| 山西省| 资讯| 性xxxx搡xxxxx搡欧美| 台南县| 又白又嫩毛又多15p| gogogo免费观看国语| 国产精品99久久久久久www| 濮阳市| 又白又嫩毛又多15p| 凌源市| 99无码熟妇丰满人妻啪啪| 永吉县| 色婷婷香蕉在线一区二区| 兴城市| 在厨房拨开内裤进入毛片| 龙江县| 国产三级精品三级在线观看| 亚洲男人天堂| 人人妻人人澡人人爽精品日本| 国产伦精品一区二区三区 | 国产乱xxⅹxx国语对白| 国产成人综合欧美精品久久| 日本真人做爰免费视频120秒| 国产三级精品三级在线观看| 97伦伦午夜电影理伦片| 国产99久一区二区三区a片| 麻豆国产一区二区三区四区| 喀喇沁旗| 国产99久一区二区三区a片| 长岭县| 文成县| 啦啦啦www日本高清免费观看 | 人人妻人人澡人人爽人人dvd| 欧美性猛交xxxx乱大交| 亚洲精品一区中文字幕乱码| 高清欧美性猛交xxxx黑人猛交| 璧山县| 马尔康县| 尉氏县| 且末县| 惠安县| 久久精品一区二区免费播放| 亚洲精品喷潮一区二区三区 | 亚洲 小说 欧美 激情 另类| 武城县| 东山县| 国产精品人人做人人爽人人添| 亚洲精品久久久久久久蜜桃| 阿拉善盟| 国产美女裸体无遮挡免费视频 | 波多野吉衣av无码| 欧美老熟妇乱大交xxxxx| 巴彦县| 日本不卡一区| 欧美人与性动交g欧美精器| 泊头市| 国产精品久久久一区二区三区| 国产精品久久久久久久久久久久| 靖宇县| 欧美一区二区三区成人片在线 | 国产精成人品| 亚洲熟女乱色综合亚洲小说| 亚洲国产精品18久久久久久| 国产精品久久久久无码av| 国精产品一区一区三区mba下载| 日韩伦人妻无码| 无码一区二区三区免费| 亚洲 小说 欧美 激情 另类| 渭南市| 欧美老熟妇又粗又大| 乌拉特前旗| av片在线观看| 精品国产av色一区二区深夜久久| 欧洲精品码一区二区三区免费看 | 99久久人妻精品免费二区| 好爽又高潮了毛片免费下载| 中文字幕人成人乱码亚洲电影| 日本三级吃奶头添泬无码苍井空| 韩城市| 成人h动漫精品一区二区| 泰和县| 皮山县| 欧美成人午夜无码a片秀色直播| 精品国产av色一区二区深夜久久 | jlzzzjlzzz国产免费观看| 五月天激情国产综合婷婷婷| 精品国产乱码久久久久久婷婷| 国产无套精品一区二区三区 |