欧美黑人又粗又大的性格特点,国产农村妇女aaaaa视频,欧美高清精品一区二区,好爽又高潮了毛片免费下载

鋰電池鎳鈷錳三元材料的最新進展

鉅大鋰電  |  點擊量:0  |  2018年12月08日  

鎳鈷錳三元材料是近年來開發(fā)的一類新型鋰離子電池正極材料,具有容量高、循環(huán)穩(wěn)定性好、成本適中等重要優(yōu)點,由于這類材料可以同時有效克服鈷酸鋰材料成本過高、錳酸鋰材料穩(wěn)定性不高、磷酸鐵鋰容量低等問題,在電池中已實現(xiàn)了成功的應(yīng)用,并且應(yīng)用規(guī)模得到了迅速的發(fā)展。

鋰電池鎳鈷錳三元材料最新研究進展

據(jù)披露,2014年中國鋰離子電池正極材料產(chǎn)值達95.75億元,其中三元材料為27.4億元,占有率為28.6%;在動力電池領(lǐng)域,三元材料正強勢崛起,2014年上市的北汽EV200、奇瑞eQ、江淮iEV4、眾泰云100等均采用三元動力電池

2015年上海國際車展,在新能源汽車中,三元鋰電池的占有率超過了磷酸鐵鋰電池成為一大亮點,包括吉利、奇瑞、長安、眾泰、中華等大部分國內(nèi)主流車企都紛紛推出采用三元動力電池的新能源車型。許多專家預(yù)言:三元材料憑借其優(yōu)異的性能和合理的制造成本有望在不久的將來取代價格高昂的鈷酸鋰材料。

人們發(fā)現(xiàn):鎳鈷錳三元正極材料中鎳鈷錳比例可在一定范圍內(nèi)調(diào)整,并且其性能隨著鎳鈷錳的比例的不同而變化,因此,出于進一步降低鈷鎳等高成本過渡金屬的含量,以及進一步提高正極材料的性能的目的;世界各國在具有不同鎳鈷錳組成的三元材料的研究和開發(fā)方面做了大量的工作,已經(jīng)提出了多個具有不同鎳鈷錳比例組成的三元材料體系。包括333,523,811體系等。一些體系已經(jīng)成功地實現(xiàn)了工業(yè)化生產(chǎn)和應(yīng)用。

本文將較為系統(tǒng)地介紹近年來幾種主要的鎳鈷錳三元材料的最新研究進展及其成果,以及人們?yōu)榱烁倪M這些材料的性能而開展的摻雜、包覆等方面的一些研究進展。

1鎳鈷錳三元正極材料結(jié)構(gòu)特征

鎳鈷錳三元材料通常可以表示為:LiNixCoyMnzO2,其中x+y+z=1;依據(jù)3種元素的摩爾比(x∶y∶z比值)的不同,分別將其稱為不同的體系,如組成中鎳鈷錳摩爾比(x∶y∶z)為1∶1∶1的三元材料,簡稱為333型。摩爾比為5∶2∶3的體系,稱之為523體系等。

333型、523型和811型等三元材料均屬于六方晶系的α-NaFeO2型層狀巖鹽結(jié)構(gòu),如圖1。

鋰電池鎳鈷錳三元材料最新研究進展

鎳鈷錳三元材料中,3種元素的的主要價態(tài)分別是+2價、+3價和+4價,Ni為主要活性元素。其充電時的反應(yīng)及電荷轉(zhuǎn)移如圖2所示。

鋰電池鎳鈷錳三元材料最新研究進展

一般來說,活性金屬成分含量越高,材料容量就越大,但當(dāng)鎳的含量過高時,會引起Ni2+占據(jù)Li+位置,加劇了陽離子混排,從而導(dǎo)致容量降低。Co正好可以抑制陽離子混排,而且穩(wěn)定材料層狀結(jié)構(gòu);Mn4+不參與電化學(xué)反應(yīng),可提供安全性和穩(wěn)定性,同時降低成本。

2鎳鈷錳三元正極材料制備技術(shù)的最新研究進展

固相法和共沉淀法是傳統(tǒng)制備三元材料的主要方法,為了進一步改善三元材料電化學(xué)性能,在改進固相法和共沉法的同時,新的方法諸如溶膠凝膠、噴霧干燥、噴霧熱解、流變相、燃燒、熱聚合、模板、靜電紡絲、熔融鹽、離子交換、微波輔助、紅外線輔助、超聲波輔助等被提出。

2.1固相法

三元材料創(chuàng)始人OHZUKU最初就是采用固相法合成333材料,傳統(tǒng)固相法由于僅簡單采用機械混合,因此很難制備粒徑均一電化學(xué)性能穩(wěn)定的三元材料。為此,HE等、LIU等采用低熔點的乙酸鎳鈷錳,在高于熔點溫度下焙燒,金屬乙酸鹽成流體態(tài),原料可以很好混合,并且原料中混入一定草酸以緩解團聚,制備出來的333,掃描電鏡圖(SEM)顯示其粒徑均勻分布在0.2~0.5μm左右,0.1C(3~4.3V)首圈放電比容量可達161mAh/g。TAN等采用采用納米棒作為錳源制備得到的333粒子粒徑均勻分布在150~200nm。

固相法制得的材料的一次粒子粒徑大小在100~500nm,但由于高溫焙燒,一次納米粒子極易團聚成大小不一的二次粒子,因此,方法本身尚待進一步的改進。

2.2共沉淀法

共沉淀法是基于固相法而誕生的方法,它可以解決傳統(tǒng)固相法混料不均和粒徑分布過寬等問題,通過控制原料濃度、滴加速度、攪拌速度、pH值以及反應(yīng)溫度可制備核殼結(jié)構(gòu)、球形、納米花等各種形貌且粒徑分布比較均一的三元材料。

原料濃度、滴加速度、攪拌速度、pH值以及反應(yīng)溫度是制備高振實密度、粒徑分布均一三元材料的關(guān)鍵因素,LIANG等通過控制pH=11.2,絡(luò)合劑氨水濃度0.6mol/L,攪拌速度800r/min,T=50℃,制備得到振實密度達2.59g/cm3,粒徑均勻分布的622材料(圖3),0.1C(2.8~4.3V)循環(huán)100圈,容量保持率高達94.7%。

鋰電池鎳鈷錳三元材料最新研究進展

鑒于811三元材料具有高比容量(可達200mAh/g,2.8~4.3V),424三元材料則可提供優(yōu)異的結(jié)構(gòu)和熱穩(wěn)定性的特點。有研究者試圖合成具有核殼結(jié)構(gòu)的(核為811,殼層l為424)三元材料,HOU等采用分布沉淀,先往連續(xù)攪拌反應(yīng)釜(CSTR)中泵入8∶1∶1(鎳鈷錳比例)的原料,待811核形成后在泵入鎳鈷錳比例為1∶1∶1的原料溶液,形成第一層殼層,然后再泵入組成為4∶2∶2的原溶液,最終制備得到核組成為811,具有殼組成為333、424的雙層殼層的循環(huán)性能優(yōu)異的523材料。4C倍率下,這種材料循環(huán)300圈容量保持率達90.9%,而采用傳統(tǒng)沉淀法制備的523僅為72.4%。

HUA等采用共沉淀法制備了線性梯度的811型,從顆粒內(nèi)核至表面,鎳含量依次遞減,錳含量依次遞增,從表1可明顯看到線性梯度分布的811三元材料大倍率下放電容量和循環(huán)性明顯優(yōu)于元素均勻分布的811型。

鋰電池鎳鈷錳三元材料最新研究進展

納米三元材料,其表面積大,Li+遷移路徑短、高的離子和電子電導(dǎo)、優(yōu)異的機械強度等可以極大改善電池大倍率下性能。

HUA等采用快速共沉淀法制備了納米花狀的333型,3D納米花狀的333型不僅縮短了Li+遷移路徑,而且其特殊的表面形貌為Li+和電子提供了足夠多的通道,這也很好解釋了為什么該材料具有優(yōu)異倍率性能(2.7~4.3V,20C快充下,放電比容量達126mAh/g)。

因氨水與金屬離子的優(yōu)異絡(luò)合性能,共沉淀法普遍采用氨水作為絡(luò)合劑,但氨水具有腐蝕性和刺激性,對人和水生動物均有害,即便在很低的濃度下(>300mg/L),因此KONG等嘗試采用低毒性的絡(luò)合劑草酸和綠色絡(luò)合劑乳酸鈉替代氨水,其中乳酸鈉作為絡(luò)合劑制備的523型材料,其0.1C、0.2C性能均優(yōu)異于氨水作為絡(luò)合劑制備得到的523型。

2.3溶膠凝膠法

溶膠凝膠法(sol-gel)最大優(yōu)點是可在極短時間內(nèi)實現(xiàn)反應(yīng)物在分子水平上均勻混合,制備得到的材料具有化學(xué)成分分布均勻、具有精確的化學(xué)計量比、粒徑小且分布窄等優(yōu)點。

MEI等采用改良的sol-gel法:將檸檬酸和乙二醇加入到一定濃度鋰鎳鈷錳硝酸鹽溶液中形成溶膠,然后加入適量的聚乙二醇(PEG-600),PEG不僅作為分散劑,而且還作為碳源,一步合成了粒徑分布在100nm左右且碳包覆的核殼結(jié)構(gòu)的333三元材料,1C循環(huán)100圈容量保持率達97.8%(2.8~4.6V,首圈放電容量175mAh/g)。YANG等考察不同制備方法(sol-gel、固相法和沉淀法)對424型性能影響,充放電測試結(jié)果表明:sol-gel法制備的424材料具有更高的放電容量。

2.4模板法

模板法憑借其空間限域作用和結(jié)構(gòu)導(dǎo)向作用,在制備具有特殊形貌和精確粒徑的材料上有著廣泛應(yīng)用。

WANG等采用碳纖維(VGCFs)作為模板劑(圖4),利用VGCFs表面—COOH吸附金屬鎳鈷錳離子,高溫焙燒制得納米多孔的333三元材料。

鋰電池鎳鈷錳三元材料最新研究進展

納米多孔的333型粒子一方面可以極大縮短鋰離子擴散路徑,另一方面電解液可以浸潤至納米孔中為Li+擴散增加另一通道,同時納米孔還可以緩沖長循環(huán)材料體積變化,從而提高材料穩(wěn)定性。以上這些優(yōu)點使得333型在水系鋰離子電池上獲得出色的倍率和循環(huán)性能:45C充放電,首圈放電比容量達108mAh/g,180C充電,3C放電,循環(huán)50圈,容量保持率達95%。

XIONG等采用多孔MnO2作為模板劑,LiOH作為沉淀劑,將鎳鈷沉淀在MnO2孔道和表面上,在通過高溫焙燒制得333型,與傳統(tǒng)沉淀法相比較,模板法制備得到的333三元材料具有更優(yōu)異的倍率性能和穩(wěn)定性。

2.5噴霧干燥

噴霧干燥法因自動化程度高、制備周期短、得到的顆粒細微且粒徑分布窄、無工業(yè)廢水產(chǎn)生等優(yōu)勢,被視為是應(yīng)用前景非常廣闊的一種生產(chǎn)三元材料的方法。

OLJACA等采用噴霧干燥法制備了組成為333三元材料,在60~150℃高溫下,鎳鈷錳鋰硝酸鹽迅速霧化,在短時間內(nèi)水分蒸發(fā),原料也迅速混勻,最后得到的粉末在900℃焙燒4h即得到最終333三元材料。

OLJACA等認為通過控制原料熱解過程中的溫度和停留時間,即可大大縮短甚至完全避免高溫焙燒,從而達到連續(xù)、大規(guī)模、一步制備得到最終的材料;另外顆粒大小調(diào)控可通過控制溶液濃度、噴嘴液滴大小等因素。OLJACA等通過此法制備的材料0.2C放電比容量達167mAh/g,且10C大倍率下放電比容量達137mAh/g。

2.6紅外、微波等新型焙燒方法

紅外、微波等新型電磁加熱相對于傳統(tǒng)電阻加熱,可大大縮短高溫焙燒時間同時可一步制備碳包覆的復(fù)合正極材料。

HSIEH等采用新型紅外加熱焙燒技術(shù)制備了三元材料,首先將鎳鈷錳鋰乙酸鹽加水混合均勻,然后加入一定濃度的葡萄糖溶液,真空干燥得到的粉末在紅外箱中350℃焙燒1h,然后在900℃(N2氣氛下)焙燒3h,一步制得碳包覆的333復(fù)合正極材料,SEM顯示該材料粒徑在500nm左右,有輕微團聚,X射線衍射(XRD)譜圖顯示該材料具有良好的層狀結(jié)構(gòu);在2.8~4.5V電壓范圍內(nèi),1C放電50圈,容量保持率高達94%,首圈放電比容量達170mAh/g(0.1C),5C為75mAh/g,大倍率性能有待改善。

HSIEH等還嘗試中頻感應(yīng)燒結(jié)技術(shù),采用200℃/min升溫速率,在較短的時間內(nèi)(900℃,3h)制備了粒徑均勻分布在300~600nm的333材料,該材料循環(huán)性能優(yōu)異,但大倍率充放電性能有待完善。

從以上可以看到,固相法雖工藝簡單,但材料形貌、粒徑等難以控制;共沉淀法通過控制溫度、攪拌速度、pH值等可制備粒徑分布窄、振實密度高等電化學(xué)性能優(yōu)異的三元材料,但是共沉淀法需要過濾、洗滌等工序,產(chǎn)生大量工業(yè)廢水;溶膠凝膠法、噴霧熱解法和模板法得到的材料元素化學(xué)計量比精確可控、顆粒小且分散性好,材料電池性能優(yōu)異,但這些方法制備成本高、工藝復(fù)雜。

sol-gel環(huán)境污染大,噴霧熱解廢氣需要回收處理,新型優(yōu)異廉價的模板劑的制備有待開發(fā);新型紅外和中頻加熱技術(shù)可縮短高溫焙燒時間,但升溫、降溫速率難不易控制,且材料倍率性能有待改善。諸如噴霧熱解、模板法、sol-gel等如能進一步優(yōu)化合成工藝,采用廉價原料,有望實現(xiàn)工業(yè)化大規(guī)模應(yīng)用。

3鎳鈷錳三元正極材料存在問題及其改性

與磷酸鐵鋰和鈷酸鋰比較,鎳鈷錳三元材料具有成本適中、比容量高等優(yōu)點,但是也存在一些急需解決的問題,主要問題包括:電子導(dǎo)電率低、大倍率穩(wěn)定性差、高電壓循環(huán)穩(wěn)定性差、陽離子混排(尤其是富鎳三元)、高低溫性能差等。針對這些問題,目前主要通過元素摻雜和表面包覆來改善。

3.1離子摻雜改性

在LiNixCoyMnzO2晶格中摻入微量的其他元素如:Na、V、Ti、Mg、Al、Fe、Cr、Mo、Zr、Zn、Ce、B、F、Cl,可提高鎳鈷錳三元的電子和離子電導(dǎo)率、結(jié)構(gòu)穩(wěn)定性,降低陽離子混排程度,從而改善材料的電化學(xué)性能。離子摻雜可分為陽離子摻雜和陰離子摻雜。

3.1.1陽離子摻雜

陽離子摻雜又可分為等價陽離子摻雜和不等價陽離子摻雜。

等價陽離子摻雜一般可穩(wěn)定材料結(jié)構(gòu),拓展離子通道,提高材料離子電導(dǎo)率。GONG等將共沉淀制備的Ni1/3Co1/3Mn1/3(OH)2與LiOH、NaOH混合后高溫焙燒制得Li0.95Na0.05Ni1/3Co1/3Mn1/3O2,Na+(0.102nm)半徑大于Li+(0.076nm),等價摻雜Na+后,不僅晶胞參數(shù)c、a都增大了,而且c/a和I003/I104也增大了,這說明Na摻雜一方面增加了層間距,拓寬了Li+擴散通道,有利于Li+快速脫嵌,另一方面Na摻雜降低了陽離子混排程度,層狀結(jié)構(gòu)更加有序和完整;

Li+快速脫嵌是有助于改善材料倍率性能,充放電測試顯示Na摻雜后材料不同倍率下(0.1~5C)其性能均優(yōu)于未摻雜的:摻雜Na+的0.1C(27mA/g,2.0~4.5V)首圈放電比容量達250mAh/g,未摻雜的僅為155mAh/g,且摻雜Na的在循環(huán)110圈后容量保持率達99%,而未摻雜的前10圈就已經(jīng)衰減了2.5%;電化學(xué)阻抗顯示摻雜Na可降低電子轉(zhuǎn)移阻抗。

HUA等采取類似方法摻雜Na+,制備了Li0.97Na0.03Ni0.5Co0.2Mn0.3O2,得到的結(jié)論與GONG等一致。

不等價陽離子摻雜一般會改變材料能帶結(jié)構(gòu),提高材料電子電導(dǎo);對于富鎳三元如523、622、811等,離子摻雜可降低陽離子混排程度,從而提高材料電化學(xué)性能。

鑒于釩氧化物是離子和電子良好導(dǎo)體,ZHU等通過固相法制備了不同含量釩摻雜的Li[Ni0.5Co0.2Mn0.3]1?xVxO2(X=0、0.01、0.03、0.05),XPS顯示V主要為V5+,電化學(xué)阻抗表明V5+不等價摻雜降低了電子轉(zhuǎn)移阻抗;

XRD譜圖顯示V摻雜降低了陽離子混排,晶胞參數(shù)c的增加使得在不同倍率下Li+脫嵌更加容易,因此材料在0.1~5C不同倍率性能優(yōu)異于未摻雜的;但由于V5+電化學(xué)非活性,摻雜后材料首次放電比容量降低了。

HENG等采用Al摻雜改善了523型材料高溫循環(huán)和存儲性能。當(dāng)充電截止電壓高于4.3V時,三元材料循環(huán)性能會惡化。

NAYAK等將充電截止電壓提高至4.6V,333型容量迅速衰減,通過高倍透鏡和拉曼光譜檢測,發(fā)現(xiàn)高壓循環(huán)會破壞333材料層狀結(jié)構(gòu),層狀結(jié)構(gòu)向類尖晶石結(jié)構(gòu)轉(zhuǎn)變,EIS測試顯示充電截止電壓高于4.4V時,電子轉(zhuǎn)移阻抗增大,導(dǎo)致高壓下材料容量迅速衰減。

為提高材料結(jié)構(gòu)穩(wěn)定性,MARKUS等通過燃燒法制備得LiNi0.33Mn0.33Co0.33?yTiyO2,發(fā)現(xiàn)Ti4+取代Co3+可抑制次級巖鹽相形成,且Ti4+半徑大于Co3+,Ti—O鍵能>M—O(M=Ni,CoMn),可抑制材料在鋰脫嵌時體積的改變。

LIU等共沉淀法制備的Cr摻雜的333材料,電化學(xué)阻抗(EIS)測試顯示Cr摻雜降低了電子轉(zhuǎn)移阻抗,在4.6V截止電壓下循環(huán)50圈容量保持率達97%,未摻雜的僅為86.6%。

3.1.2陰離子摻雜

陰離子摻雜主要為F?、Cl?取代O2?。F—M(M=Ni,Co,Mn)化學(xué)鍵能高于M—O,這有利于增強材料穩(wěn)定性,且F摻雜可緩解電解液中HF對正極材料的腐蝕,Cl與F化學(xué)性質(zhì)相類似,Cl?半徑大于O2?,相比O2?,Cl?更容易給出電子。

ZHANG等采用sol-gel法制備得Cl摻雜的LiNi1/3Co1/3Mn1/3O2?xClx,Cl摻雜一方面降低了過渡金屬平均化合價,而低價金屬離子半徑較大,引起晶胞參數(shù)a增大,另一方面Cl?半徑大于O2?,增大了晶胞參數(shù)c,拓寬了Li+遷移通道,Li+脫嵌也更加快速,材料倍率性能因此得到了提升;

Cl摻雜也改善了材料高溫性能(x=0.1,55℃,100圈容量保持率為91.8%,而未摻雜的為82.4%);當(dāng)充電截止電壓升到4.6V,容量均迅速衰減,但未摻雜的衰減更厲害。YUE等采用低溫固相法將制備的811型或622型三元材料與NH4F混合研磨,450℃空氣中焙燒5h即制得不同F(xiàn)含量摻雜的811和622三元材料。

雖然室溫下F摻雜的811和622材料首圈放電比容量(0.1C)均有輕微降低,但是F摻雜的811型在高溫55℃,50循環(huán)放電比容量由207mAh/g降至204mAh/g,而未摻雜的則由205mAh/g降至187mAh/g,顯然摻F顯著提高了材料高溫循環(huán)穩(wěn)定性,且XRD顯示摻雜了F的811型循環(huán)100圈后依舊保持良好的層狀結(jié)構(gòu),而未摻雜的結(jié)構(gòu)發(fā)生了改變,其中摻雜F的I003/I104值大于未摻雜的,說明F摻雜降低了陽離子混排程度;

透射電子顯微鏡(TEM)顯示循環(huán)100圈后F摻雜的811粒子表面依舊光滑,而未摻雜的粒子表面形貌發(fā)生了明顯變化,YUE等認為材料循環(huán)穩(wěn)定性的改善是源于F摻雜避免了電極遭受HF的腐蝕。F摻雜的622三元材料循環(huán)穩(wěn)定性和倍率性能均得到了提高。

3.1.3多離子共摻雜

多離子共摻雜,其協(xié)同作用可更顯著改善材料電化學(xué)性能。

SHIN等采用碳酸鹽共沉淀法制備得Mg摻雜的424型前體,再與LiNO3和LiF混鹽研磨后高溫焙燒制得Mg、F共摻雜的LiNi0.4Co0.2Mn0.36Mg0.04O2?yFy(y=0,0.08)。1C循環(huán)100圈(3~4.5V,1C=170mA/g),Mg、F共摻雜雖降低了材料首圈放電比容量,但未摻雜的保持率僅為87%,單摻Mg的保持率達91%,而Mg、F共摻雜的保持率高達97%,即便充電截止電壓升至4.6V,Mg、F共摻的424三元材料,50圈循環(huán)沒有衰減,而未摻雜的循環(huán)穩(wěn)定性迅速惡化。

EIS測試顯示Mg、F共摻雜降低了電子轉(zhuǎn)移阻抗,差熱分析顯示Mg、F共摻放熱峰正移且反應(yīng)熱降低,熱穩(wěn)定性的顯著改善被認為是粒子表面M—F(M=Ni,CoMn)的保護。SHIN等認為循環(huán)穩(wěn)定性的顯著改善來源于F摻雜保護正極材料表面免受HF腐蝕。

MOFID等通過燃燒法制備得Fe、Al共摻雜LiNi0.6Mn0.2Co0.15Al0.025Fe0.025O2,F(xiàn)e、Al共摻雜降低了陽離子混排程度,增強了622型結(jié)構(gòu)穩(wěn)定性,從而改善了材料電化學(xué)性能。

3.2表面包覆改性

優(yōu)異的熱穩(wěn)定性和循環(huán)穩(wěn)定性是LiNixCoyMnzO2應(yīng)用的前提,提高充電截止電壓可增大三元材料克比容量,但會加劇電解液與正極材料的副反應(yīng),惡化材料循環(huán)穩(wěn)定性;在較高的工作溫度下或較大倍率下充放電,LiNixCoyMnzO2熱穩(wěn)定性和循環(huán)穩(wěn)定性也面臨嚴峻考驗;低溫下鎳鈷錳三元材料導(dǎo)電性急劇降低,容量也會顯著下降;

研究發(fā)現(xiàn)在LiNixCoyMnzO2粒子表面包覆,包覆層作為保護層可緩解電解液對正極材料的腐蝕,抑制結(jié)構(gòu)坍塌,可以顯著改善三元材料的循環(huán)穩(wěn)定性和熱穩(wěn)定性;導(dǎo)電性的包覆層還可提高三元材料的電子電導(dǎo)和離子電導(dǎo),從而提高其電化學(xué)性能。

3.2.1金屬氧化物包覆

Al2O3導(dǎo)電性較差但化學(xué)性質(zhì)穩(wěn)定,可以減緩電解液與材料的副反應(yīng),從而改善材料結(jié)構(gòu)穩(wěn)定性和電化學(xué)性能。

YANO等通過sol-gel法制備了Al2O3包覆的333三元材料,Al2O3包覆顯著改善了材料在高充電截止電壓下的循環(huán)穩(wěn)定性(在4.5V、4.6V、4.7V充電截止電壓下循環(huán)100圈,包覆的容量保持率分別為98%、90%、71%,未包覆的分別為25%、16%、32%),YANO等認為未包覆的容量迅速衰減是因為電極極化,而電極極化很有可能是電極表面結(jié)構(gòu)的變化,而包覆的333型穩(wěn)定性的提高正是因為Al2O3包覆抑制了電極極化,增強了333型結(jié)構(gòu)穩(wěn)定性。

YANO等通過STEM(掃描透射電子顯微鏡)和EELS(電子能量損失譜)證實在未包覆的粒子表面區(qū)域有巖鹽相生成。

LIU等[35]和CHEN等分別采用Y2O3、TiO2作為包覆層,提高了523和622三元材料在高充電截止電壓下的循環(huán)穩(wěn)定性:厚度為5~15nm的Y2O3包覆的523型在2.8~4.6V,1800mA/g下循環(huán)100圈容量保持率達76.3%(第100圈為114.5mAh/g),而未摻雜的僅為8.3%;厚度為25~35nm的TiO2包覆的622型在3.0~4.5V下1C循環(huán)50圈容量保持率為88.7%,未包覆的為78.1%。

傳統(tǒng)濕化法包覆三元材料,其包覆厚度和均勻性難以控制,KONG等采用原子層沉積技術(shù)(ALD)在523三元材料表面沉積了厚度僅為4.3nm的ZnO。ALD技術(shù)包覆更加均勻,超薄的ZnO層既可有效減少金屬離子在電解液中的溶解,緩解電極免受電解液的腐蝕,同時其超薄型有利于Li+快速遷移,ALD包覆顯著提升了523三元材料的電化學(xué)性能(在2.5~4.5V,55℃下,1C、5C各循環(huán)30圈,60圈后放電比容量≥225.5mAh/g,而未包覆的循環(huán)至60圈已低于140mAh/g﹚。

3.2.2金屬氟化物包覆

SHI等采用濕化法將333三元材料分散于LiNO3溶液中,然后滴加NH4F溶液,70℃攪拌蒸干后500℃空氣下焙燒2h制得LiF包覆的333三元材料。因為F—M強的結(jié)合能可以穩(wěn)固粒子表面結(jié)構(gòu),保護電極免受HF的腐蝕,同時也增強了粒子表層導(dǎo)電性。

不管是高溫(60℃)還是低溫下(0、?20℃),LiF包覆的均優(yōu)于未包覆的(圖5)。

鋰電池鎳鈷錳三元材料最新研究進展

鋰電池鎳鈷錳三元材料最新研究進展

YANG等也采用濕化法制備得AlF3包覆的523三元材料,其高倍率下的循環(huán)性能大大提升,4C循環(huán)100圈保持率為98%(4C首圈比容量150mAh/g)。

3.2.3鋰鹽包覆

一些如Li3VO4、Li2ZrO3等鋰鹽是Li+優(yōu)良導(dǎo)體,包覆這些鋰鹽有利于改善正極材料倍率和低溫性能。

WANG等在333表面包覆了一層10個納米左右的Li2ZrO3,PITT測試顯示Li+擴散系數(shù)增加了兩倍,鋰離子擴散快慢直接影響材料電化學(xué)性能。在50C的高倍率下,包覆的333型放電比容量高達104.8mAh/g,50C循環(huán)100圈保持率達89.3%;?20℃下,包覆的1C循環(huán)100圈保持率達73.8%,而未包覆的僅有9.9%。

HUANG等在523型材料表面包覆了3%Li3VO4,10C循環(huán)100圈容量保持率為41.3%(首圈為149mAh/g),而未摻雜的僅有1.4%。測試結(jié)果顯示Li+擴散系數(shù)是隨著循環(huán)逐漸降低的,但摻雜了Li3VO4的相比降低幅度較緩慢。

3.2.4碳或聚合物包覆

電子電導(dǎo)率較低是鎳鈷錳三元材料的固有缺點,導(dǎo)電性超強的碳或聚合物包覆可以提高其電子電導(dǎo),從而改善其電化學(xué)性能。聚乙烯二氧噻吩(PEDOT)是良好的電子導(dǎo)體且電化學(xué)穩(wěn)定而聚乙二醇(PEG)又是Li+的良好導(dǎo)體,一般的包覆物都不具備這倆種性質(zhì)。

JU等首先將PEDOT和PEG溶解與N-甲基吡咯烷酮中(NMP),然后將622材料粉末溶于聚合物溶液中,60℃攪拌4h,過濾干燥即得到PEDOT-PEG雙聚合物包覆的622三元材料。包覆層的電化學(xué)惰性、優(yōu)異的離子和電子電導(dǎo)率顯著提高了622三元材料循環(huán)穩(wěn)定性(0.5C循環(huán)100圈衰減率由10.7%下降至6.1%)和結(jié)構(gòu)穩(wěn)定性(TEM顯示循環(huán)100圈后表面包覆層仍在,表面形貌基本沒有發(fā)生變化)。

XIONG等通過化學(xué)聚合制備了聚吡咯包覆的811材料,該電化學(xué)惰性包覆層提高了材料在高溫和高的充電截止電壓下的穩(wěn)定性,同時聚吡咯良好導(dǎo)電性改善了811型的倍率性能。

MEI等采用PEG(600)作為分散劑和碳源,在333型表面包覆了一層碳,提高了333材料在高充電截止電壓下的循環(huán)穩(wěn)定性(2.8~4.6V,1C循環(huán)100圈容量衰減小于3%)。

3.3其他改性

碳納米管、石墨烯優(yōu)異的導(dǎo)電性和特殊形貌可顯著提高LiNixCoyMnzO2的電子電導(dǎo)。

ZHOU等采用熱分解法制備了333/Ag復(fù)合材料,將多臂碳納米管(CNT)分散于NMP中,球磨2h后再加入333/Ag復(fù)合材料,干燥后得333/Ag/CNT復(fù)合材料,Ag和CNT的優(yōu)異導(dǎo)電性顯和CNT形成的3維導(dǎo)電構(gòu)造顯著改善了材料的電化學(xué)性能:1C循環(huán)100圈,復(fù)合材料容量保持率達94.4%,而純333型僅為63%。

JAN等將石墨烯和811材料以1∶20比例混合研磨0.5h,分散于乙醇中后超聲,然后50℃攪拌8h,干燥后得石墨烯/811復(fù)合材料,經(jīng)石墨烯改性的811型,其容量、循環(huán)穩(wěn)定性以及倍率性能均得到顯著改善。

WANG等在沉淀法制備三元前體時加入石墨烯,片層結(jié)構(gòu)石墨烯的加入其空腔結(jié)構(gòu)降低了一次顆粒的團聚,緩解外壓從而減少二次顆粒碾壓的破碎,石墨烯的三維導(dǎo)電網(wǎng)絡(luò)提高了材料高倍率性和循環(huán)性能。

有別于包覆和摻雜,HAN等僅通過簡單機械球磨(納米Sb2O3與333或424材料以3∶100混合),無需高溫焙燒即得Sb2O3改性的333和424型,Sb2O3的加入抑制了電極極化,降低了電子轉(zhuǎn)移阻抗,穩(wěn)固了SEI膜(電極界面膜),從而改善了333和424材料的電化學(xué)性能。

改進合成工藝和探索新的制備方法可以改善LiNixCoyMnzO2的性能,而諸如摻雜、包覆以及制備復(fù)合材料則可以進一步提高三元材料在高溫、高的充電截止電壓、低溫等條件下的熱穩(wěn)定性、結(jié)構(gòu)穩(wěn)定性,從而提高材料的容量、循環(huán)穩(wěn)定性、倍率性能。

4結(jié)語

LiNixCoyMnzO2憑借低廉的制備成本、高能量密度和優(yōu)異的循環(huán)壽命在正極材料中的地位逐步顯現(xiàn)出來,未來電動車動力電池領(lǐng)域三元材料將會是有利的競爭者之一。今后三元材料的研究的重點:優(yōu)化合成工藝,進一步降低制備成本;探索新的制備方法,從而制備出具有高倍率性能的如納米三元和具有特殊形貌的高振實密度三元材料;

向具有更高比容量的富鎳三元發(fā)展如424、523、622、811型等;通過摻雜和包覆來改善三元材料結(jié)構(gòu)穩(wěn)定性,從而達到通過提高充電截止電壓來提高LiNixCoyMnzO2的比容量目的,當(dāng)然與之匹配的高壓電解液的研發(fā)也屬于研究重點之一。

相關(guān)產(chǎn)品

  1. <form id="ejezu"></form>

  2. 主站蜘蛛池模板: www国产亚洲精品久久网站| 亚洲精品一区二区三区不卡| 佳木斯市| 国产成人三级一区二区在线观看一| 无码h肉动漫在线观看| 国产日产久久高清欧美一区| 马龙县| 无码人妻丰满熟妇啪啪欧美| 少妇无套内谢久久久久| 安福县| 人与嘼交av免费| 国产乱子伦精品无码码专区| 忻城县| 97精品国产97久久久久久免费| 常熟市| 韩城市| 镇巴县| 陵水| 九一九色国产| av片在线观看| 涿鹿县| 亚欧成a人无码精品va片| 瑞丽市| 益阳市| 高潮毛片又色又爽免费| 99精品欧美一区二区三区| 国产后入清纯学生妹| 欧美成人一区二区三区片免费| 国产伦亲子伦亲子视频观看 | 国产乱国产乱老熟300部视频| 扎囊县| 亚洲成av人片一区二区梦乃| 夜夜爽妓女8888视频免费观看| 老鸭窝视频在线观看| 欧美丰满老熟妇aaaa片 | 泸溪县| 亚洲男人天堂| 茶陵县| 欧美亚韩一区二区三区| 邢台市| 叶城县| 国产午夜激无码毛片久久直播软件| 欧美激情性做爰免费视频| 元谋县| 精品国产成人亚洲午夜福利| 国产精品久久| 伊人久久大香线蕉综合网站| 尤物视频在线观看| 天堂va蜜桃一区二区三区| 松江区| 铁力市| 孝义市| 99这里只有精品| 无码人妻aⅴ一区二区三区| 永兴县| 亚洲精品一区二三区不卡| 东乡县| 成人性生交大免费看| 成人网站免费观看| 武定县| 亚洲精品字幕| 国产精品无码久久久久| 榆社县| 97精品超碰一区二区三区| 性xxxx欧美老妇胖老太性多毛| 熟女丰满老熟女熟妇| 欧美黑人又粗又大的性格特点| 囯产精品一品二区三区| 国产精品久免费的黄网站| 日本电影一区二区三区| 成全在线观看免费高清电视剧| 精品无码一区二区三区| 国产suv精品一区二区6| 周口市| 天祝| 霍邱县| 孝感市| 江津市| 青神县| 富阳市| 镶黄旗| 国产精品久久久久久久9999| 当涂县| 乌海市| 国产精品激情| 成全视频在线观看免费| 国产精品欧美一区二区三区| 陵川县| 色婷婷香蕉在线一区二区| 新丰县| 亚洲 欧美 激情 小说 另类| 欧美人与性动交g欧美精器| 武强县| 最近免费中文字幕大全免费版视频| 和顺县| 中文字幕人成乱码熟女香港| 99精品视频在线观看| 无码人妻精品一区二区| 四川省| 欧美 变态 另类 人妖| 国产欧美日韩| 伊宁县| 成全视频观看免费高清中国电视剧| 国产超碰人人模人人爽人人添| 城市| 江阴市| 亚洲 小说区 图片区 都市| 盐津县| 欧美激情在线播放| 阿拉善左旗| 蜜臀av一区二区| 成全电影大全在线观看国语版高清 | 国产又色又爽又黄刺激在线观看| 武义县| 亚洲第一成人网站| 国产麻豆成人精品av| 禹城市| 新竹县| 来凤县| 博野县| 免费人妻精品一区二区三区| 国精产品一区一区三区| 成 人片 黄 色 大 片| 国产精品揄拍100视频| 阿图什市| 国产精品一区二区久久国产| 波多野结衣乳巨码无在线观看 | 天天躁夜夜躁av天天爽| 精品国产一区二区三区四区阿崩| 宣汉县| 99热在线观看| 国产精品无码天天爽视频| 亚洲午夜福利在线观看| 97人妻精品一区二区三区| 抚宁县| 99久久久国产精品免费蜜臀| 久久久久99精品成人片三人毛片| 欧美精品乱码99久久蜜桃| 老鸭窝视频在线观看| 崇信县| 欧美裸体xxxx极品少妇| 精品少妇爆乳无码av无码专区| 国产免费一区二区三区在线观看| 成人毛片100免费观看| 亚洲啪av永久无码精品放毛片| 久久久久成人片免费观看蜜芽| 久久久久久欧美精品se一二三四| 于田县| 国产欧美熟妇另类久久久| 潜江市| 合阳县| 中文字幕人妻丝袜乱一区三区| 陵川县| 伊金霍洛旗| 修水县| 少妇无码一区二区三区 | 新乡县| 极品少妇xxxx精品少妇偷拍| 定州市| 成人片黄网站色大片免费毛片| 成人免费视频在线观看| 搡老熟女老女人一区二区| 欧美性猛交aaaa片黑人| 久久精品国产av一区二区三区| 博罗县| 东辽县| 少妇粉嫩小泬喷水视频www| 祁东县| 国产精品无码一区二区三区| 成全电影大全在线观看国语版| 岢岚县| 国产精品久久久久久吹潮| 99久久人妻无码精品系列| 国产欧美一区二区三区精华液好吗| 性久久久久久| 揭东县| 亚洲精品喷潮一区二区三区| 禹城市| 国产suv精品一区二区883| 国产卡一卡二卡三无线乱码新区| 亚洲精品喷潮一区二区三区| 日本不卡一区| 潮州市| 孟村| 永平县| 工布江达县| 清涧县| 国产精品99无码一区二区| 国产老妇伦国产熟女老妇视频| 久久久久久久极品内射| 亚洲色偷精品一区二区三区| 99久久久国产精品无码免费| 吉木萨尔县| 阳朔县| 汉寿县| 和林格尔县| 冀州市| 成人网站免费观看| 国产午夜三级一区二区三| 大名县| 中文字幕亚洲无线码在线一区| 贵溪市| 99国产精品99久久久久久| 久久99精品久久久久久琪琪| 中文字幕亚洲无线码在线一区| 粗大的内捧猛烈进出| 无码日本精品xxxxxxxxx| 护士人妻hd中文字幕| 扎赉特旗| 精品免费国产一区二区三区四区| 无码人妻一区二区三区精品视频| 青春草在线视频观看| 日韩一区二区三区精品| 庆城县| 久久久精品人妻一区二区三区| 国产精品亚洲一区二区无码| 国产老妇伦国产熟女老妇视频| 久久久精品国产sm调教网站| 性生交大片免费看| 午夜精品久久久久久久久| gogogo免费视频观看| 四川丰满少妇被弄到高潮| 轮台县| 人妻妺妺窝人体色www聚色窝| 在厨房拨开内裤进入毛片| 国产精品99无码一区二区| 木兰县| 播放男人添女人下边视频| 欧洲-级毛片内射| 日本公妇乱偷中文字幕| 国产成人无码精品亚洲| 亚洲精品久久久久久无码色欲四季 | 瑞金市| 福州市| 柳州市| 唐海县| 三年成全免费观看影视大全| 鹤山市| 当阳市| 日韩伦人妻无码| 桃园市| 沅陵县| 天堂在线中文| 无码国产精品一区二区高潮| 精品无码一区二区三区| 无套中出丰满人妻无码| 孟村| 精品国产精品三级精品av网址| 成全在线电影在线观看| 女人脱了内裤趴开腿让男躁 | 南和县| gogogo免费视频观看| 精品乱码一区二区三四区视频| 含山县| 久久久精品免费| 成人做受黄大片| 三台县| 三年成全全免费观看影视大全| 国产免费一区二区三区免费视频 | 公主岭市| 日韩欧美高清dvd碟片| 东莞市| 国产精品美女久久久久久久久| 伊人久久大香线蕉综合75| 五华县| 日本公妇乱偷中文字幕| 塘沽区| 金沙县| 青川县| 精品免费国产一区二区三区四区| 吕梁市| 大余县| 国产精品美女久久久久久久久| 俺去俺来也在线www色官网| 国产人妻大战黑人20p| 武汉市| 洪湖市| 进贤县| 原平市| 乌拉特前旗| 昌都县| 阳朔县| 午夜精品久久久久久久久| 久久成人无码国产免费播放| 霍州市| 久久丫精品忘忧草西安产品| 人人妻人人澡人人爽国产一区| 精品国产乱码久久久久久婷婷 | 久久发布国产伦子伦精品| 五华县| 资讯| 四川丰满少妇被弄到高潮| 成熟人妻av无码专区| 成人国产片女人爽到高潮| 日本电影一区二区三区| 喜德县| 国产精品久久久久久久免费看 | 亚洲熟女一区二区三区| 内射中出日韩无国产剧情| 欧美人与性动交g欧美精器| 欧美性生交大片免费看| 欧美日韩精品| 精品人妻无码一区二区三区蜜桃一| 精品国产18久久久久久| 上饶市| 伊人久久大香线蕉综合75| 宁国市| 欧美一区二区三区| 久久久久无码国产精品不卡 | 蜜臀av在线播放| 国产香蕉尹人视频在线| 太保市| 黄页网站视频| 国产精品理论片| 临漳县| 大庆市| 甘南县| 国产伦精品一区二区三区免费| 色翁荡息又大又硬又粗又爽| 色吊丝中文字幕| 宁武县| 熟女丰满老熟女熟妇| 免费大黄网站| 国产成人精品久久| 538在线精品| 久久久久成人精品无码| 久久亚洲熟女cc98cm| 精品黑人一区二区三区久久| 色哟哟网站在线观看| a片在线免费观看| 甘谷县| 久久久久久欧美精品se一二三四| 国产午夜精品一区二区三区嫩草| 林西县| 欧美一区二区| 三年在线观看大全免费| 亚洲乱妇老熟女爽到高潮的片| 欧美成人一区二区三区片免费| 白嫩少妇激情无码| 粗大的内捧猛烈进出| 性做久久久久久久免费看| 熟妇高潮一区二区在线播放| 陕西省| 中文字幕av一区二区三区| 国产精品av在线| 色吊丝中文字幕| 屯门区| 成全影视大全在线看| 张家界市| 钦州市| 成全电影大全在线观看| 久久国产劲爆∧v内射| 浦东新区| 鸡泽县| 无码人妻久久一区二区三区蜜桃| 湘阴县| 南澳县| 内射无码专区久久亚洲| 彝良县| 泰和县| 骚虎视频在线观看| 久久久成人毛片无码| 成全在线观看高清完整版免费动漫| 亚洲欧美在线观看| 亚洲人成人无码网www国产| 欧美老熟妇乱大交xxxxx| 精品人妻无码一区二区三区| 铁岭县| 亚洲蜜桃精久久久久久久久久久久| 连州市| 国产欧美精品区一区二区三区| 亚洲精品97久久中文字幕无码 | 国产精品高清网站| 国产午夜三级一区二区三| 日日摸日日添日日碰9学生露脸 | 国产精品美女www爽爽爽视频| 一区二区三区视频| 东宫禁脔(h 调教)| 台江县| 色妞色视频一区二区三区四区| 国产无人区码一码二码三mba| 拉萨市| 久久久久久成人毛片免费看| 夏津县| 日韩精品无码一区二区三区久久久 | 高清欧美性猛交xxxx黑人猛交| 金昌市| 亚洲熟妇色xxxxx欧美老妇y| 丹巴县| 99久久精品国产一区二区三区| 国精产品一二三区精华液| 无码人妻av免费一区二区三区| 成人h动漫精品一区二区| 巴彦县| 精品乱码一区二区三四区视频| 久久99精品久久久久久| 老熟女网站| 西贡区| 彭州市| 平度市| 欧美精品在线观看| 1插菊花综合网| 山东| 久久久久无码国产精品不卡| 性色av蜜臀av色欲av| 国产精品久久午夜夜伦鲁鲁| 精品成人av一区二区三区| 三年片在线观看免费观看高清电影| 白朗县| 栾城县| 成人免费区一区二区三区| 国模无码视频一区二区三区| 亚洲最大的成人网站| 汤阴县| 精品人妻无码一区二区三区四川人| 久久久成人毛片无码| 99精品一区二区三区无码吞精| 富裕县| 嘉义县| 少女视频哔哩哔哩免费| 安仁县| 岫岩| 囊谦县| 江华| 浦县| 临城县| 久久丫精品久久丫| 霍林郭勒市| 汕头市| 平原县| 岗巴县| 宜兴市| 乖乖趴着h调教3p| 岳阳县| 溆浦县| 屏山县| 西安市| 上思县| 淮北市| 太仆寺旗| 米奇影视第四色| 中文字幕日韩人妻在线视频| 自拍偷在线精品自拍偷无码专区| 福贡县| 高潮毛片又色又爽免费| 国产熟妇久久777777| 河北区| 色哟哟网站在线观看| 国产熟妇久久777777| 最好的观看2018中文| 亚洲精品久久久久久动漫器材一区| 国产精品无码一区二区三区免费| 最近免费中文字幕大全免费版视频 | 巫山县| 内江市| 中文字幕一区二区三区精华液| 中国极品少妇xxxxx| 免费观看黄网站| 无极县| 无码国产伦一区二区三区视频| 草色噜噜噜av在线观看香蕉| 六盘水市| 欧美日韩精品| 国产精品久久久一区二区| 欧美高清精品一区二区| 卓资县| 无码h肉动漫在线观看| 稷山县| 囯产精品一品二区三区| 三叶草欧洲码在线| 平潭县| 肥老熟妇伦子伦456视频| 国产偷人妻精品一区| 望奎县| 金乡县| 金秀| 辉南县| 阿巴嘎旗| 丰满大肥婆肥奶大屁股| 怀安县| 国产精品扒开腿做爽爽爽a片唱戏 亚洲精品一区二区三区在线 | 伊人久久大香线蕉av一区| 仪陇县| 若尔盖县| 新巴尔虎右旗| 成人片黄网站色大片免费毛片| 牛牛在线视频| 久久久久久欧美精品se一二三四 | gogogo在线高清免费完整版| 亚洲欧美精品aaaaaa片| 邮箱| 在线天堂www在线国语对白| 国产全是老熟女太爽了| 呼图壁县| 成人性生交大免费看| 国内精品人妻无码久久久影院蜜桃| 无码人妻丰满熟妇啪啪欧美| 沈阳市| 99热这里有精品| 蓬莱市| 国产精品无码专区| 日韩一区二区在线观看视频| 平果县| 四川丰满少妇被弄到高潮| 激情 小说 亚洲 图片 伦| 漳州市| 三年在线观看大全免费| 性生交大片免费看| 亚洲女人被黑人巨大进入 | 台南市| 三年在线观看高清大全| 丹阳市| 中牟县| 桂阳县| 中文字幕精品久久久久人妻红杏1 精品人妻无码一区二区三区 | 深州市| 精品少妇爆乳无码av无码专区| 亚洲国产精品久久久久久| 国产精品扒开腿做爽爽爽a片唱戏| 成人做爰a片免费看黄冈| 客服| 青青草视频在线观看| 免费人妻精品一区二区三区| 长垣县| 迁安市| 亚洲欧美精品aaaaaa片| 国产偷窥熟妇高潮呻吟| 国产福利视频| 成熟人妻av无码专区| 熟妇人妻一区二区三区四区| a片在线免费观看| 无码h黄肉3d动漫在线观看| 欧美人妻一区二区三区| 久久久久99精品成人片三人毛片 | 成都市| 双城市| 亚洲永久无码7777kkk| 国产乱码精品一区二区三区中文 | √天堂资源地址在线官网| 亚洲女人被黑人巨大进入| 真实的国产乱xxxx在线| av片在线观看| 新昌县| 娇妻玩4p被三个男人伺候电影| 国产成人精品一区二区三区视频| 超碰免费公开| 狠狠cao日日穞夜夜穞av| 天堂va蜜桃一区二区三区| 辰溪县| 亚洲最大的成人网站| 国产精品扒开腿做爽爽爽a片唱戏 亚洲精品一区二区三区在线 | 宁武县| 国产精品自产拍高潮在线观看| 中文字幕av一区二区三区| 轮台县| 黄大仙区| 静宁县| 耒阳市| 敦化市| 老熟女高潮一区二区三区| 南陵县| 亚洲精品久久久久久动漫器材一区| 成全动漫视频在线观看| 国产在线视频一区二区三区| 舞阳县| 久久久久久久97| 免费人成视频在线播放| 柏乡县| 黄页网站视频| 巨大黑人极品videos精品| 精品国产成人亚洲午夜福利| 国产精品久久久| 丰满岳乱妇在线观看中字无码| 毛片免费视频| 日本边添边摸边做边爱| 国产精品永久久久久久久久久| 午夜福利电影| 绍兴市| 肉大捧一进一出免费视频| 韩国三级中文字幕hd久久精品| 国产无遮挡又黄又爽又色| 兰坪| 色噜噜狠狠一区二区三区果冻| 性视频播放免费视频| 高雄市| 三年片在线观看大全| 国产99久一区二区三区a片| 人妻洗澡被强公日日澡| 久久久国产一区二区三区| 377人体粉嫩噜噜噜| 东光县| 宁明县| 国产精品久久久久久久| 亚洲男人天堂| 精品久久久久久久久久久aⅴ| 无码国产69精品久久久久同性| 午夜精品国产精品大乳美女| 日韩无码专区| 一本大道东京热无码| 久久久久久亚洲精品| 亚欧洲精品在线视频免费观看| 又白又嫩毛又多15p| 南宁市| 博兴县| 色综合天天综合网国产成人网| 咸阳市| 人妻洗澡被强公日日澡| 看免费真人视频网站| 熟妇人妻系列aⅴ无码专区友真希| 欧美性猛交aaaa片黑人| 国产午夜视频在线观看| 亚洲精品鲁一鲁一区二区三区| 精品夜夜澡人妻无码av| 欧美午夜精品一区二区三区电影| 大理市| 欧美三根一起进三p| 青春草在线视频观看| 久久久久久久极品内射| 老鸭窝视频在线观看| 中文字幕 人妻熟女| 麻阳| 国产精品成人免费一区久久羞羞| 无码人妻丰满熟妇啪啪 | 狠狠色综合7777久夜色撩人| 国产精品成人99一区无码| 国产精品午夜福利视频234区| 国产精品久久久| 随州市| 国产女女做受ⅹxx高潮| 麻栗坡县| 无码一区二区波多野结衣播放搜索| 国产精品久久久| 荔波县| 色哟哟网站在线观看| 宁陕县| 久久久久成人精品免费播放动漫| 伊人久久大香线蕉综合75| 鸡泽县| 延寿县| 五指山市| 古浪县| 永德县| 县级市| 章丘市| 通渭县| 台江县| 克东县| 国产乱子伦精品无码码专区| 周至县| 勃利县| 久久久久久亚洲精品中文字幕| 人妻无码中文字幕免费视频蜜桃| 强伦人妻一区二区三区视频18| 亚洲精品白浆高清久久久久久 | 济南市| 成全电影大全在线观看国语版高清 | 尼木县| 甘孜| 国产成人精品一区二区三区| 武隆县| 日韩精品无码一区二区三区| 久久久久亚洲精品| 大宁县| 国产精品爽爽久久久久久| 国产精品美女久久久久久久久| 国产在线视频一区二区三区| 国产精品乱码一区二区三区| 国精产品一区二区三区| 怡红院av亚洲一区二区三区h| 中文在线资源天堂www| 内乡县| 国产精品二区一区二区aⅴ污介绍 人妻精品久久久久中文字幕69 | 国产精成人品| 草色噜噜噜av在线观看香蕉| 彰化市| 熟女人妻一区二区三区免费看| 久久久久成人片免费观看蜜芽| 国产农村乱对白刺激视频| 成全在线观看免费高清电视剧| 精品少妇爆乳无码av无码专区| 高尔夫| 芦溪县| 福贡县| 色翁荡息又大又硬又粗又爽| 深州市| 通化市| 临汾市| 无锡市| 三年片在线观看免费观看高清电影| 午夜时刻免费入口| 色吊丝中文字幕| 平邑县| 河西区| 成人性生交大片免费看中文| 县级市| av无码精品一区二区三区宅噜噜| 风流少妇按摩来高潮| 国产情侣久久久久aⅴ免费| 国产午夜三级一区二区三| 粗大的内捧猛烈进出| 国产精品丝袜黑色高跟鞋| 我把护士日出水了视频90分钟| 山阴县| 国产女人和拘做受视频免费| 国产精品久久久久久久免费看| 中文字幕乱码在线人视频| 欧美激情综合色综合啪啪五月| 嵩明县| 99国产精品久久久久久久成人热| 成全动漫视频在线观看| 久久偷看各类wc女厕嘘嘘偷窃| 隆德县| 久久久久无码国产精品不卡| 禄丰县| 中文字幕乱码在线人视频| 昌吉市| 国产视频一区二区| 江门市| 欧美激情性做爰免费视频| 城市| 永仁县| 聂荣县| 永昌县| 亚欧洲精品在线视频免费观看| 国产欧美精品一区二区三区| 3d动漫精品啪啪一区二区免费| 建昌县| 尼勒克县| 酒泉市| 吕梁市| jzzijzzij亚洲成熟少妇| 佛坪县| 茌平县| 张北县| 国产综合在线观看| 和平区| 久久精品99久久久久久久久| 交城县|