欧美黑人又粗又大的性格特点,国产农村妇女aaaaa视频,欧美高清精品一区二区,好爽又高潮了毛片免费下载

有關高鎳鋰離子電池正極材料分析

鉅大鋰電  |  點擊量:0  |  2021年04月21日  

三元材料是鎳鈷錳酸鋰Li(NiCoMn)O2,三元復合正極材料前驅體產品,是以鎳鹽、鈷鹽、錳鹽為原料,里面鎳鈷錳的比例可以根據實際要調整,三元材料做正極的電池相關于鈷酸鋰離子電池安全性高。目前越來越多的電動物流車采用了三元材料電池,這重要是由于三元系正極材料NCA具有能量密度高、循環壽命長、成本低、利于整車輕量化等優點,能夠有效解決城市物流最后一公里的問題,而且由此引發了電動物流車從磷酸鐵鋰向三元技術轉變的趨勢。


假如說前兩年高鎳三元材料電池還處于個別廠家和學界的研發階段,那么從2016年開始,高鎳三元電池的研發和生產已呈燎原之勢。


高軒高科在其年產10000噸高鎳三元材料項目通告中稱,其掌握了高鎳三元正極材料晶


面生長控制和快離子導體表面包覆改性技術,提高了高鎳三元正極材料的加工性能、克容量和循環壽命。


寧德時代總裁黃世霖在相關場合表示,寧德時代在材料上會逐步由磷酸鐵鋰/石墨、三元、高鎳三元/硅碳再到固態鋰、空氣金屬電池演進。十三五期間,寧德時代將致力于高鎳三元/硅碳電池研發,努力實現350Wh/公斤的目標。目前已經組織專門團隊,確保實現量產目標。


當升科技則對外稱,其NCM622三元正極材料已實現規模化量產,并得到國內、國際客戶的認可,被應用到新能源汽車動力鋰電池領域,產品供不應求。2016年七月,當升科技募資新建年產4000噸高鎳三元材料項目。


根據高工鋰電調研,雖然目前三元電池公司重要應用的還是NCM333和NCM523電池,但是NCM622已經進入了部分公司的材料供應鏈。隨著材料體系的高鎳化進程,預計2017年國內三元電池公司將開始應用NCM811和NCA材質,電池單體能量密度將200wh/kg向250-300wh/kg邁進。


https://image.ipaiban.com/upload-ueditor-image-20171210-1512905786337031753.png


(圖文來源:比克電池林建)


當前各大公司布局選材如下:


2016年公布的《節能與新能源汽車技術路線圖》提到了純電動汽車動力鋰電池的比能量目標是2020年350Wh/kg,2025年是400Wh/kg,2030年500Wh/kg。該目標與四部委提出的指標很接近,也在業內引發了熱議。我們梳理一下2016年媒體報道的各大電池公司的比能量目標和實現路徑:


比亞迪:三元電池希望在2018年做到240Wh/kg,2020年大概做到300Wh/kg。正極采用高鎳三元材料,負極采用氧化亞硅或納米硅。


寧德時代:2016年可以做到200-250Wh/kg,十三五期間希望實現350Wh/kg目標,材料體系為高鎳三元/硅碳材料。


國軒高科:2020年目標是300-350Wh/kg,采用高鎳三元正極材料,硅基負極材料,5V高電壓電解液。


比克:18650圓柱第四代產品(3.0Ah)普遍可以達到220-230Wh/kg,2017年第五代產品(3.6Ah)的比能量預計可以達到250Wh/kg。比克是較早鎖定三元材料路線的公司。


力神:正在開發200-250Wh/kg的產品,圓柱電池已經可以達到250Wh/kg,2020年爭取達到300Wh/kg,采用第三代富鋰錳基層狀材料和硅負極材料。


三星SDI:2016年水平為250Wh/kg,預計2030年達到350Wh/kg(可能采用了其他電池體系了)。


值得注意的是,寧德時代、天津力神、國軒高科三家電池公司在2016年還入圍了科技部重點專項,該項目的考核指標為:


動力鋰電池新材料新體系(基礎前沿類)考核指標:新型鋰離子電池樣品能量密度400Wh/kg,新體系電池樣品能量密度500Wh/kg。


高比能量鋰離子電池技術(重大共性關鍵技術類)考核指標:電池單體能量密度300Wh/kg,循環壽命1500次,成本0.8元/Wh,安全性等達到國標要求;年生產量力2億瓦時,產品累計銷售3000萬瓦時或裝車數量1000套這些重點專項的考核指標還對循環壽命、安全性能、甚至銷量和產量提出了要求,這對入圍的電池公司也是不小的考驗。


從所有公開的信息可以看到,我國各大電池公司實現300Wh/kg的技術路線可以歸納為:


正極材料:高鎳三元,或者富鋰錳基


負極材料:硅基材料


電解液:高壓電解液


隔膜:目前還是PP、PE為主,外加陶瓷涂層


引言


在環境污染和能源危機的雙重壓力下,尋找清潔的綠色能源是當今世界共同努力的方向。鋰離子電池在清潔能源中占有很重要的一席之地,特別是鋰離子電池作為動力源的汽車,近幾年發展迅速,針對全球能源和環境問題提出了一條新的發展道路[1-2]。鋰離子電池的性能重要取決于參與電極反應的活性物質,負極的發展速度要快于正極[3]。因此,研究鋰離子電池正極材料,對提高鋰離子電池性能和拓寬其應用領域具有重要的經濟意義和現實意義。


鋰離子電池具有多種正極材料,具有層狀結構的LiCoO2是當前重要的商品化鋰離子電池正極材料,其綜合性能優異,但成本較高、Co存在毒性,制約了其更大規模應用。LiNiO2晶體結構類似,成本較低且更加環保,但結構穩定性較差。高鎳正極材料(Ni80%)相比于傳統的層狀LiCoO2具有高比容量、低成本、長壽命等優點,是目前國內外的研究熱點,已逐漸進入商品化應用階段,被認為是極具應用前景的鋰離子動力鋰電池正極材料。


高鎳正極材料具有高比容量和低成本的特點,但也存在容量保持率低,熱穩定性差等缺陷,如圖1所示[4,5],使其商業化難度大。高鎳正極材料的性能和結構與制備工藝緊密相關,不同的制備方法與改性方法直接影響產品的性能。鋰離子高鎳系正極材料尤其是高鎳系的三元正極材料LiNi0.8Co0.15A10.0502(NCA)和LiNi0.8Co0.1Mn0.1O2(NCM811)是目前研究和應用非常熱門的鋰離子電池正極材料。因此,本文針對NCA和NCM811兩種較熱門的正極材料進行綜述,包括其重要的制備方法和改性研究進展,并進行兩者重要性能的比較。


1、高鎳系正極材料的制備方法


由于高鎳系正極材料對制備環境、制作電池環境、儲存環境(溫度、濕度、氧值)非常敏感,所以,尋找一套合適的制備體系,關于整個高鎳系正極材料的工業化都具有一定的參考價值。制備方法對高鎳系層狀材料的微觀結構和電化學性能有著較大的影響。常見的制備法包括:高溫固相法、共沉淀法、溶膠-凝膠法、噴霧干燥法和燃燒法等。


1.1NCA的制備


Cao等[6]采用常規共沉淀法制備了LiNi0.8Co0.2-xAlx02(0x0.2)正極材料。先將鎳、鈷和鋁的硝酸鹽配制成2mol/L混合溶液,滴入4mol/L氨水調節pH值至8.5后,再滴入氫氧化鈉溶液至pH值達到11,然后加入PVP分散劑,沉淀經洗滌、過濾、干燥即得Ni-Co-A1氫氧化物前驅體。按物質的量比Li/Me=1.05混合LiOH和前驅體,經600℃焙燒6h后,置于氧氣流中在750℃焙燒8-24h,獲得LiNi0.8Co0.2-xAlx02。750℃焙燒16h制備的NCA樣品顯示出160.8mAh/g的最高首次放電比容量和89%的首次庫侖效率,40次循環后放電比容量仍為150mAh/g。


Han等[7]在采用溶膠凝膠法140℃下制成溶膠。然后在800℃下煅燒得到LiNi0.8Co0.2-xAlx02粉體材料。結果表明:不管含Al(x0.05)多少,該粉體均是單相層狀化合物。此外,發現隨著Al的新增使材料的初始放電容量減少,但充放電性能卻變好了。Ju等[8]以Ni、Co、Al的硝酸鹽為原料,檸檬酸和乙二醇為螯合劑,采用噴霧熱解法制得Ni-Co-A1-O前驅體后,配入LiOH在800℃焙燒0.5~12h,所得NCA材料具有球形形貌,平均尺寸1.1μm。放電比容量高達200mAh/g,且具有良好的循環性能、高溫性能和倍率性能。


Hu[9]通過共沉淀法制備的NCA正極材料在2.8V-4.3V的充放電截止電壓范圍內以0.2C的電流密度充放電,材料具有196mAh/g的放電比容量,50圈循環后依然具有96.1%的容量保持率。Chung等[10]采用化學吸附的方法在NCA表面包覆了一層厚度為2~3nm的無定形碳,碳包覆層有效地抑制了基體材料與電解液中HF的反應,提高了基體材料的熱穩定性,并改善了其在大電流下的電化學性能。實際上,采用電化學惰性物質對鋰離子電池LiNi02基正極材料進行改性,雖然提高了循環性能和安全性能,但放電比容量或能量密度缺降低了。Kim等[11]采用沉淀法制備了A1F3表相改性的NCA正極材料,基體材料50次循環后的容量保持率僅86.5%,而改性材料卻達到96%,且改性材料的倍率性能和熱穩定性都得到了提高。


1.2NCM811的制備


Xiao等[12]采用過渡金屬醋酸鹽,配以不同鋰源,在不同條件下制備NCM811正極材料。結果表明,所得NCM811樣品的充放電性能差別顯著,以LiOHH2O或LiNO3為鋰源的樣品比容量明顯低于Li2CO3鋰源的樣品。Li2CO3和過渡金屬醋酸鹽經550℃預處理后在800℃燒結所得樣品,電化學性能最佳,0.2C倍率下前20次循環充放電最高容量為200.8mAh/g,平均容量188.1mAh/g。


Lu等[13]分別采用溶膠–凝膠法和共沉淀制備NCM811正極材料,并研究了兩種方法對材料性能的影響。結果發現,相比于共沉淀法,溶膠–凝膠法制備的NCM811正極材料顆粒為六面體結構,粒徑集中在500nm左右,層狀結構明顯,陽離子混排度和顆粒團聚度低,而振實密度高,首次放電比容量為200.2mAh/g,在0.5C下循環50次后容量保持率為82.2%。


Xiong等[14]制備了LiF原位包覆的NCM811材料,圖2為NCM811材料包覆后的EDX分析結果。由圖2可見,NCM811的表面分布著均勻的LiF層。LiF包覆層有效阻礙了HF與電極的副反應發生,200次循環后材料容量保持率比未包覆的高10.4%,倍率性能和60℃高溫循環性能同樣高于未包覆材料。


高鎳正極材料性能很大程度上取決于顆粒的尺寸和形貌[15],因此制備方法大多集中于將不同原料均勻分散,得到小尺寸、比表面積大的球形顆粒。共沉淀法與高溫固相法結合是目前的主流方法,前期原料混合均勻,制備的材料粒徑均一,表面形貌規整,并且過程易于控制,是目前工業生產的重要方法。噴霧干燥法較共沉淀法過程簡單,制備速度快,所得材料形貌并不亞于共沉淀法,有進一步研究的潛力。


2、高鎳系正極材料的改性研究


2.1NCA的改性研究


在使用過程中,NCA材料的重要問題是容量衰減。一方面,充電時Ni2+和Li+的半徑非常接近,部分Ni2+會占據Li+的空位,發生離子混排,造成材料的不可逆容量損失;另一方面,材料中的Ni在處于高氧化態時(Ni3+或Ni4+)具有很強的不穩定性,高溫下會導致材料結構發生改變,并容易與電解液發生副反應,造成容量衰減[16]。


目前,重要的改善方法是通過摻雜Mg、Mn等元素來合成LiNi1–x–y–zCoxAlyMzO2四元材料[17,18]以及對三元材料進行表面包覆來對材料的性能進行改善。摻雜可以穩定材料的晶格結構,降低陽離子混排程度,減少充放電過程中的不可逆容量損失,是從材料內部來提高性能。而表面包覆則可以降低電極材料與電解液的直接接觸面積,減少電解液中的HF對材料的腐蝕用途,進而抑制副反應的發生(圖3),是從材料外部來解決問題[19,20]。相比于摻雜,人們更多地采用表面包覆來對材料進行改性[21]。


Chung等人[22]將十二烷基硫酸鈉與NCA混合,在空氣中600℃煅燒5h后,得到碳包覆的NCA/C材料。在2.8~4.3V的電壓區間,0.1、0.5、1和3C倍率下進行充放電,NCA/C的放電比容量分別為183、165、140和83mAh/g,相比于未包覆材料的181、160、128和46mAh/g,在大倍率條件下有較大提高。同時,材料的循環性能也得到了改善,NCA/C在0.1C倍率下循環40圈的容量保持率為93%,而未包覆材料的容量保持率為86%。


Huang等[23]發現FePO4包覆提高了NCA材料的循環性能,但材料的首次充放電容量下降。采用電化學惰性物質進行包覆時,會損失材料的放電比容量和能量密度。在此基礎上,研究者提出了電化學活性物質包覆。Liu等人[24]通過熔融鹽法在NCA材料表面包覆重量百分比3.0%的LiCoO2。在0.5C,2.75~4.3V的測試條件下循環50次,NCA/LiCoO2材料的首次放電比容量為163.6mAh/g,容量保持率為95.8%,而未包覆材料的首次放電比容量為154.3mAh/g,容量保持率為87.9%。包覆后材料的循環和倍率性能均有了一定提升。電化學阻抗測試結果表明在包覆層表面生成的NiO相的減少是材料性能提升的重要原因。


Yoon等人[25]采用高能機械球磨法,在氬氣保護下將NCA與石墨烯200r/min球磨30min,得到NCA-石墨烯復合材料。在55.6mA/g的電流下循環80次,NCA-石墨烯復合材料的首次放電比容量為180mAh/g,容量保持率為97%,而未包覆材料的首次放電比容量為172mAh/g,容量保持率為91%。所包覆的石墨烯增強了材料的導電性,從而降低了電池的極化。相比于其他碳包覆實驗,該方法采用石墨烯進行包覆,不需高溫煅燒而直接獲得碳源,更加節能環保,但還要考慮添加石墨烯帶來的成本新增及提高石墨烯包覆層的均勻程度。Chung等[26]采用原位聚合方法在NCA材料包覆一層PAN,不僅穩定了材料結構、延緩了材料循環過程中阻抗的新增,同時也改善了材料的倍率性能。


Lim等人[27]通過溶液法制備出Li2O-2B2O3(LBO)包覆的NCA/LBO材料。LBO包覆層的形成過程及Li+在包覆層中的傳輸機理如圖4所示,可見包覆層阻止了HF對電極材料的侵蝕,并為Li+供應了良好的擴散通道。包覆后,電極材料的結構坍塌及過渡金屬溶解受到抑制,進而提高了材料55℃高溫下的循環性能。55℃下以電流為180mA/g進行測試,循環100次后包覆量重量百分比為2%的NCA/LBO材料的容量保持率為94.2%,遠遠高于未包覆材料的75.3%。因為具有較高的離子傳導能力,包覆后材料的倍率性能也有了相應提高。此外,由于包覆層抑制了電極材料與電解液的副反應,包覆后材料也展示了較好的熱穩定性。可見,采用鋰化物-氧化物作為復合氧化物對NCA材料進行包覆,可以很好地提高電極材料的性能。以此為基礎,嘗試其他的氧化物組成,或可成為未來的一個研究方向。


2.2NCM811的改性研究


層狀高鎳NCM材料的納米級一次顆粒能夠擴大反應界面并縮短Li+的擴散路徑,提高材料的容量和倍率性能,但也存在副反應的風險。NCM層狀材料與電解液反應,生成SEI膜,增大邊界阻抗,導致容量快速衰減[28–30]。另外,NCM層狀材料在高電壓下深度充電時,Li/O空位將導致被氧化的Ni3+/4+離子變得不穩定,陽離子發生遷移并在電極表面形成由NiO相和尖晶石相組成的表面重建層[31,32]。表面重建層的出現將增大Li+的擴散動力學阻力,導致容量衰減。高鎳NCM層狀材料還存在高溫性能差和振實密度低等缺點,制約著此材料的商業化應用。摻雜和表面包覆改性被認為是有效減少副反應、提高材料電化學性能和熱穩定性的重要方法。


Wang等[33]發現部分F-替代O2-有利于穩定NCM811材料的表面結構,改善材料的高溫循環性能。Yuan等[34]采用共沉淀法制備NCM811材料,并考察了Li、Mg、Al三種元素摻雜對材料性能的影響。Mg和Al的摻雜使得NCM811材料晶格常數減小,I(003)/I(104)增大,陽離子混排度降低,提高了層狀結構穩定性;Li摻雜雖然讓晶格常數增大,但在充電過程中多余的Li仍留在層狀結構中,起到穩定結構的用途。電化學測試中,Mg摻雜的樣品首次放電容量為205.9mAh/g,略低于其他樣品,但20次循環后容量僅衰減7.5%,為三者最優。


Sun等[35]發現Mg-Al共摻雜的NCM811材料的結構穩定性和熱穩定性優于未摻雜的或單一元素摻雜的材料。Lu等[36]在NCM811表面包覆NCM111材料,防止了電化學性能突降的現象。Woo等[37]為改善NCM811的穩定性,將Al、Mg協同摻雜,得到Li(Ni0.8Co0.1Mn0.08Al0.01Mg0.01)O2材料。Rietveld精修結果表明,材料層狀結構優良,Al3+進入過渡金屬層,Mg2+則同時進入鋰層和過渡金屬層,Al3+的加入降低了陽離子混排度,而Mg2+則起到穩定結構,提高循環性能的用途。Li(Ni0.8Co0.1Mn0.08Al0.01Mg0.01)O2的首次放電容量為191mAh/g,循環70次后容量衰減率僅為7.5%,明顯低于未摻雜的NCM811材料。


Woo等[38]制備了SO42–/ZrO2混合包覆的NCM811正極材料。試驗結果表明,不僅ZrO2包覆在NCM811材料表面,而且有大量的硫酸鹽和亞硫酸鹽官能團吸附在ZrO2層上。ZrO2在包覆層中起到物理保護用途,將正極材料與電解液隔離,減少副反應發生;而SO42–等官能團形成了一個穩定電解液層,起到抑制電解液分解的用途。60℃充放電試驗表明,SO42–/ZrO2混合包覆的NCM811材料,50次循環后容量保持率為88.9%,比未包覆的樣品高25%;95℃的存儲比較發現,混合包覆的樣品內部壓力上升最慢,說明混合包覆的樣品界面副反應所釋放的O2最少,從而保證了材料的穩定性和電化學可逆性。


Zheng等[39]指出NCM811高溫首次放電容量略低于高錳的材料,說明高溫狀態下的高鎳材料較不穩定,邊界反應和固體電解質界面膜(SEI膜)導致Li+再嵌入過程動力學阻力增大。NCM811前幾個循環放電容量較高,但100次循環后容量衰減率高達34.3%,明顯高于其他材料。差示掃描量熱分析表明,相比于低錳材料,高錳材料不僅放熱峰后移,并且峰值從721J/g下降至527J/g。由此可知,在高鎳NCM中提高錳含量能夠顯著提高熱穩定性。但Mn含量新增時,晶格參數c也會有明顯的增大,且Mn4+的增多將導致Ni2+/Ni3+值增大,陽離子混排度加劇,Mn含量進一步新增將致使材料結構從α-NaFeO2型層狀結構向尖晶石結構轉變,降低材料比容量[40]。


3、高鎳NCA和NCM811正極材料的比較


層狀結構中,鎳是重要的氧化還原反應元素,因此,提高鎳含量可以有效提高電池的比容量[41,42]。從電池能量密度和電動汽車續航里程來看,含鎳的三元系優勢明顯,特別是高鎳三元系NCA和NCM811材料制作的電池。NCA和NCM811是目前研究和應用非常熱門的兩種鋰離子電池正極材料,兩者的比較也是研究的熱點。


。NCA和NCM811兩種正極材料,鎳含量基本沒差異,容量基本接近。關于普通三元材料,生產過程中只要空氣氣氛,而NCA要純氧氣氣氛,純氧的成本較高,且對制造氧氣生產供應設備要求極高,同時NCA對溫濕度敏感性較強,要生產環境濕度控制在10%以下,加大了生產和管理的成本。同時,NCM811相對NCA的Co含量更低,這意味著NCM811具有更好的成本及能量密度優勢。排除容量、工作電壓和成本的擔憂,NCA材料較NCM811具有更好的容量保持率[44]。特別是Al的摻入則可以一定程度上改善材料的結構穩定性,從而改善循環穩定性。此外,Co、Al的復合能促進Ni2+的氧化,減少3a位Ni2+含量,抑制材料晶體結構從H2到H3的不可逆相變,從而提高材料本身的循環穩定性。


Mn的摻入可以引導鋰和鎳層間混合,并且可以改善材料的高溫性能,提高發生放熱反應溫度到220℃,而NCA的放熱反應溫度到180℃[45]。高鎳NCA材料荷電狀態下的熱穩定較低,導致電池的安全性下降。另一方面,充放電過程中嚴重的產氣,導致電池鼓脹變形,循環及擱置壽命下降,給電池帶來安全隱患,所以通常使用NCA正極材料制作18650型圓柱電池,以緩解電池鼓脹變形問題。TeslaModelS采用與Panasonic共同研發的高容量3.1AhNCA鋰離子電池組,由7000顆18650圓柱電池組成。此外要考慮的是,盡管NCM811和NCA的化學結構具有相似性,但NCM和NCA正極材料通常采用不同的合成路線生產。將Al引入到NC結構中通常是通過熱處理來實現的,而Mn更容易通過共沉淀法加入。


相關產品

  1. <form id="ejezu"></form>

  2. 主站蜘蛛池模板: 欧美人妻日韩精品| 午夜时刻免费入口| 灵川县| 商丘市| 麻豆乱码国产一区二区三区| 免费国偷自产拍精品视频| 田林县| 初尝黑人巨砲波多野结衣| 花垣县| aa片在线观看视频在线播放| 久久国产一区二区三区| 托克逊县| 中文字幕一区二区三区四区五区| 天天躁日日躁aaaaxxxx| 亚洲字幕av一区二区三区四区| 南昌市| 亚洲精品白浆高清久久久久久| 解开人妻的裙子猛烈进入| 成全我在线观看免费观看| 海伦市| 精品无码一区二区三区久久| 正定县| 徐州市| 精品人妻无码一区二区色欲产成人| 论坛| 极品人妻videosss人妻| 国产草草影院ccyycom| 国产无人区码一码二码三mba| 龙江县| 无码成a毛片免费| 湛江市| 承德县| 亚洲人成色777777精品音频| 苏州市| 久久久久99精品国产片| 丰满女人又爽又紧又丰满| 息烽县| 成年性生交大片免费看| 国产一区二区三区免费播放| 怀柔区| 三年片免费观看大全有| 日本护士毛茸茸| 亚洲熟女一区二区三区| 三江| 日日干夜夜干| 三都| 麻豆国产av超爽剧情系列| 国产乱xxⅹxx国语对白| 沧源| 大埔区| 夜夜穞天天穞狠狠穞av美女按摩| 欧美最猛黑人xxxx黑人猛交| 国产精品久久久久久久久久久久午衣片| 花莲市| 久久久久女教师免费一区| 黄页网站视频| 特级做a爰片毛片免费69| 亚洲人成人无码网www国产| 伊人久久大香线蕉综合网站| 祁门县| 超碰免费公开| 镇坪县| 屯昌县| 乐安县| 白又丰满大屁股bbbbb| 淳化县| 中卫市| 日本三级吃奶头添泬无码苍井空| 白嫩少妇激情无码| 人人澡超碰碰97碰碰碰| 精产国品一二三产区m553麻豆| 国产精自产拍久久久久久蜜| 女人被狂躁60分钟视频| 白水县| 略阳县| 三年片在线观看免费观看大全动漫| 国产精品成人无码免费| 亚洲午夜精品一区二区| 进贤县| 亚洲精品一区二区三区在线| 芮城县| 天天躁日日躁狠狠很躁| 岳西县| 鲁甸县| 定安县| 鄂托克前旗| 保靖县| 湖州市| 国产伦亲子伦亲子视频观看 | 新龙县| 老鸭窝视频在线观看| 69久久精品无码一区二区| 国产精品久久久爽爽爽麻豆色哟哟| 国产精品无码久久久久| 灌阳县| 国产成人精品综合在线观看| 激情久久av一区av二区av三区| 国产精品99精品久久免费| 成全影视大全在线看| 欧洲熟妇色xxxx欧美老妇多毛| 一边吃奶一边摸做爽视频| 宁夏| 蓬溪县| 少妇被爽到高潮动态图| 通化市| 新建县| 日喀则市| 武鸣县| 汨罗市| 陕西省| 国产成人精品一区二区三区视频| 河间市| 濉溪县| 色综合天天综合网国产成人网| 一本色道久久综合无码人妻| 沙雅县| 涡阳县| 特黄三级又爽又粗又大| 囯产精品一品二区三区| 97在线观看| 呈贡县| 永和县| 国产欧美精品一区二区三区| 阜宁县| 国产精品久久久久久久久久久久| 景谷| 国产又色又爽又高潮免费| 虎林市| 久久久久久毛片免费播放| 国产精品久久久久久久久动漫| 精品人妻少妇嫩草av无码专区 | 欧美人与性动交α欧美精品| 欧美性受xxxx黑人xyx性爽| 海口市| 贺州市| 性xxxx搡xxxxx搡欧美| 常熟市| 久久综合久久鬼色| 麻豆国产av超爽剧情系列| 欧美性猛交aaaa片黑人| 东阳市| 伊人久久大香线蕉av一区| 无码人妻aⅴ一区二区三区69岛| 无码人妻丰满熟妇啪啪| 老熟女重囗味hdxx69| 吉木乃县| 精品国产乱码久久久久久影片 | 欧美精品乱码99久久蜜桃| 人妻体内射精一区二区三区| 江都市| 安塞县| 吉隆县| 丁青县| 綦江县| 麻城市| 四会市| 闽清县| 扶沟县| 国产suv精品一区二区883| 亚洲熟妇av乱码在线观看| 无码国产精品一区二区色情男同| 特级西西人体444www高清大胆| 庆安县| 香港| 99久久精品国产一区二区三区| 沅江市| 国产又猛又黄又爽| 国产又粗又大又黄| 成人性生交大免费看| 久久久久亚洲精品| 中文在线最新版天堂| 精品国产成人亚洲午夜福利| 亚洲精品一区国产精品| 广东省| 亚洲第一av网站| 色综合久久88色综合天天| 日韩一区二区a片免费观看| 欧美做爰性生交视频| 且末县| 成全视频在线观看免费| 莱阳市| 商南县| 少妇厨房愉情理伦bd在线观看| 欧美成人午夜无码a片秀色直播 | 99国产精品久久久久久久成人热| 亚洲精品成a人在线观看| 国产人成视频在线观看| 双辽市| 德阳市| 一区二区视频| 久久精品99久久久久久久久| 日土县| 邻水| 性生交大片免费看l| 人人妻人人澡人人爽久久av| 国产乱人伦精品一区二区| 欧美人与性动交α欧美精品 | 欧美午夜精品一区二区三区电影| 国产精品久久久久久久久久免费看| 会宁县| 古丈县| 启东市| 男ji大巴进入女人的视频| 亚洲精品乱码久久久久久不卡| 甘南县| 少妇被躁爽到高潮| 性生交大全免费看| 99国产精品久久久久久久久久久| 白玉县| 三年成全免费看全视频| 成熟妇人a片免费看网站| 一本大道久久久久精品嫩草| 国产免费无码一区二区 | 天天干天天日| 性史性农村dvd毛片| 蜜桃一区二区三区| 欧美精品18videosex性欧美| 呼图壁县| 大地影院免费高清电视剧大全| 欧美乱妇日本无乱码特黄大片| 今天高清视频免费播放| 南投市| 日本三级吃奶头添泬无码苍井空| 隆昌县| 区。| 遵义县| 鹰潭市| 高安市| 凌源市| 三年片在线观看免费观看高清电影 | 欧美一区二区| 免费人成在线观看| 灯塔市| 杭锦后旗| 亚洲蜜桃精久久久久久久久久久久| 全部孕妇毛片丰满孕妇孕交| 国产熟女一区二区三区五月婷| 无码精品一区二区三区在线 | 无码人妻少妇色欲av一区二区| 区。| 宁乡县| 乖乖趴着h调教3p| 淄博市| 成年性生交大片免费看| 国产乱码精品一品二品| 缙云县| 三年高清片大全| 成全在线观看免费完整| 精品国产一区二区三区四区阿崩 | 嵊泗县| 辉南县| 国产麻豆成人精品av| 国产成人无码一区二区在线观看| 日韩成人无码| 遵义市| 国产超碰人人模人人爽人人添| 蜜桃一区二区三区| 久久99精品久久久久久| 江安县| 丝袜亚洲另类欧美变态| 许昌市| 亚洲熟妇色xxxxx欧美老妇| 成人无码视频| 成全免费高清观看在线电视剧大全| 亚洲字幕av一区二区三区四区| 应城市| 丰原市| 色哟哟网站在线观看| 陇西县| 欧美成人片在线观看| 伊人久久大香线蕉综合75| 国产精品99| 人妻熟女一区二区三区app下载| 精品无码久久久久成人漫画 | 国产精品成人免费一区久久羞羞 | 定州市| 诸暨市| 男ji大巴进入女人的视频| 澳门| 精河县| 攀枝花市| 国产又黄又大又粗的视频| 海原县| 午夜精品久久久久久久99老熟妇| 国产精品av在线| 米林县| 国产精品无码专区| 又大又长粗又爽又黄少妇视频| 男ji大巴进入女人的视频| 响水县| 好爽又高潮了毛片免费下载| 天天爽夜夜爽夜夜爽精品视频 | 日韩高清国产一区在线| 嫩草av久久伊人妇女超级a| 人人妻人人澡人人爽精品日本| 国产精品久久久久久吹潮| 51国产偷自视频区视频| 久久久久国产精品无码免费看| 欧美性xxxxx极品娇小| 大英县| 国产内射老熟女aaaa∵| 疏勒县| 中文字幕av一区二区三区| 内射合集对白在线| 国产美女裸体无遮挡免费视频| 538在线精品| 莱西市| 欧美日韩精品| 8050午夜二级| 精品国产18久久久久久| gogogo在线高清免费完整版| 精河县| 国产乱子伦精品无码码专区| 琼中| 99久久久精品免费观看国产| 十堰市| 阜阳市| 国产精品视频在线观看| 和顺县| 麻豆精品| 弥渡县| 久久99精品国产麻豆婷婷洗澡| 玉田县| 亚洲欧美国产精品久久久久久久| 衡阳市| 欧美乱妇狂野欧美在线视频| 久久久国产精品人人片 | 额敏县| 嘉祥县| √天堂资源地址在线官网 | 国产精品成人国产乱| 东乌珠穆沁旗| 国产真实乱人偷精品视频| 两口子交换真实刺激高潮| 欧美丰满老熟妇xxxxx性| 淮北市| 久久久久成人精品免费播放动漫| 国产情侣久久久久aⅴ免费| 99久久99久久精品国产片果冻| 初尝黑人巨砲波多野结衣| 国产全是老熟女太爽了| 无码一区二区三区| 精品国产精品三级精品av网址| 成全高清免费完整观看| 天津市| 寿光市| 竹山县| 97人妻人人揉人人躁人人| 国产aⅴ激情无码久久久无码| 国产又爽又黄无码无遮挡在线观看 | 久久国产劲爆∧v内射| 国精品人妻无码一区二区三区喝尿| 久久成人无码国产免费播放| 无码h黄肉3d动漫在线观看| 绥江县| 久久无码人妻一区二区三区| 99精品视频在线观看| 蓬溪县| 日韩一区二区在线观看视频| 无码人妻丰满熟妇精品区| 三年片免费观看大全有| 特黄三级又爽又粗又大| 国产精品久久久久久久久久| 孝昌县| 国产欧美精品一区二区三区| 男ji大巴进入女人的视频| 宝丰县| 欧美成人片在线观看| 精品久久久久久| 一出一进一爽一粗一大视频| 少妇扒开粉嫩小泬视频| 久久影院午夜理论片无码| 洱源县| 欧美人与性动交g欧美精器| 欧美人与性囗牲恔配| 成全看免费观看| 隆安县| 亚洲欧美日韩一区二区| 成人毛片100免费观看| 融水| 国产suv精品一区二区883| 兴化市| 三年片在线观看免费观看大全动漫| 国产精品久久久久永久免费看| 南投县| 国产成人精品亚洲日本在线观看| 东源县| 平昌县| 德化县| 看免费真人视频网站| 丝袜美腿一区二区三区| 天干夜天干天天天爽视频| 云霄县| 亚洲精品国产精品国自产观看| 无码人妻久久一区二区三区不卡| 岱山县| 精品国产av一区二区三区| 解开人妻的裙子猛烈进入| 国产精品无码免费专区午夜| 中文字幕无码精品亚洲35| 德江县| 景德镇市| 久久久久亚洲精品| 少妇性l交大片7724com| 久久丫精品忘忧草西安产品| 欧美黑人又粗又大高潮喷水| 艳妇臀荡乳欲伦交换在线播放| 欧美成人午夜无码a片秀色直播| 成人无码av片在线观看| 欧美一区二区| 清镇市| 欧美成人一区二区三区| 亚洲国产一区二区三区| 97人妻精品一区二区三区| 亚洲小说欧美激情另类| 成全影视大全在线观看国语 | 国产成人精品三级麻豆| 铁岭县| 夜夜穞天天穞狠狠穞av美女按摩 | 田东县| 国产伦精品一品二品三品哪个好 | 国产精品成人99一区无码| 三年大片大全免费观看大全| 国产精品毛片va一区二区三区| 精品国产精品三级精品av网址| 免费三级网站| 少妇伦子伦精品无吗| 芒康县| 阿克| 丰满岳跪趴高撅肥臀尤物在线观看 | 中国女人做爰视频| 光山县| 囯产精品一品二区三区| 欧美三根一起进三p| 潜山县| 老熟女网站| 通海县| 金乡县| 民县| 邻居少妇张开腿让我爽了在线观看| 中文字幕人妻丝袜二区| 99精品欧美一区二区三区| 亚洲精品久久久久久无码色欲四季| 墨江| 蜜桃av色偷偷av老熟女| 婷婷四房综合激情五月| 人妻巨大乳hd免费看| 曲沃县| 国产良妇出轨视频在线观看| 色视频www在线播放国产人成 | 国产伦理一区二区| 日韩成人无码| 少妇精品无码一区二区免费视频| 一边吃奶一边摸做爽视频| 丝袜 亚洲 另类 欧美 变态| 米林县| 日韩精品毛片无码一区到三区| 久久99精品久久久久久琪琪| 久久av无码精品人妻系列试探| 成人欧美一区二区三区在线观看 | 合川市| 欧美成人片在线观看| 邻居少妇张开腿让我爽了在线观看| 双辽市| 欧美gv在线观看| 林西县| 乃东县| 精品无码久久久久久久久| 无码人妻久久一区二区三区蜜桃| 国产三级精品三级在线观看| 蜜臀av一区二区| 兴化市| 古交市| 南汇区| 青冈县| 威信县| 和平县| 和静县| 宁强县| 左云县| 国产精品视频在线观看| 丘北县| 牡丹江市| 欧美人与性动交g欧美精器| 久久久久久成人毛片免费看 | 少妇又紧又色又爽又刺激视频| 中文在线资源天堂www| 熟女丰满老熟女熟妇| 黑人巨大精品欧美一区二区| 伊宁县| 一本色道久久综合无码人妻| 国产奶头好大揉着好爽视频| 乌拉特中旗| 无码av免费精品一区二区三区| 澄迈县| 国产成人精品无码免费看夜聊软件 | 屯门区| 狠狠cao日日穞夜夜穞av| 天天爽夜夜爽夜夜爽精品视频| 葫芦岛市| 后入内射欧美99二区视频| 西盟| 米奇影视第四色| 新兴县| 亚洲第一av网站| 亚洲午夜福利在线观看| 秋霞在线视频| 中文字幕一区二区三区精华液| 精品国产乱码久久久久久影片| 海口市| 黄平县| 无码国产精品一区二区免费16| 龙山县| 赤水市| 洪泽县| 怀柔区| 国产探花在线精品一区二区| www夜片内射视频日韩精品成人| 凌源市| 999zyz玖玖资源站永久| 国产精品毛片一区二区三区| 国产香蕉尹人视频在线| 临海市| 米奇影视第四色| 亚洲精品一区二区三区四区五区| 田东县| 闻喜县| 麻豆国产av超爽剧情系列| 国产精品人妻| 成全视频观看免费高清第6季| 无码人妻一区二区三区在线视频 | 日本理伦片午夜理伦片| 天天躁夜夜躁av天天爽| 包头市| 西西人体做爰大胆gogo| 色欲av永久无码精品无码蜜桃| 万年县| 国产精品永久免费| 新宾| 国精产品一区一区三区免费视频| 国产精品久久久爽爽爽麻豆色哟哟| 松江区| 香蕉久久国产av一区二区| 日本公妇乱偷中文字幕| 淮阳县| 成人性做爰片免费视频| 红安县| 三年大片免费观看大全电影| 大姚县| 欧美人妻一区二区三区| 苏州市| 万年县| 菏泽市| 米脂县| 亚洲最大的成人网站| 国产香蕉尹人视频在线| 97精品国产97久久久久久免费| 平原县| 少妇特黄a一区二区三区| 欧性猛交ⅹxxx乱大交| 无码人妻一区二区三区在线视频 | 沧州市| 广灵县| 色五月激情五月| 定陶县| 精品无码人妻一区二区免费蜜桃 | 赤城县| 襄汾县| 国内精品一区二区三区| 遂平县| 亚洲国产精品18久久久久久 | 凤庆县| 湄潭县| 成全电影大全在线观看国语版| 精品乱码一区内射人妻无码| 国产精品欧美一区二区三区| 日韩电影一区二区三区| 中文字幕日韩一区二区三区不卡| 欧美性受xxxx黑人xyx性爽| 国产精品扒开腿做爽爽爽a片唱戏 亚洲精品一区二区三区在线 | 甘孜县| 司法| 桂东县| 欧美激情在线播放| 性色av蜜臀av色欲av| 亚洲人成在线观看| 怀宁县| 国产全是老熟女太爽了| 麟游县| 国产欧美一区二区精品性色 | 久久99国产精品成人| 成人性做爰片免费视频| 灵璧县| 营山县| 黄陵县| 崇信县| 国产精品永久久久久久久久久| 沙湾县| 柞水县| 铜梁县| 久久er99热精品一区二区| 草色噜噜噜av在线观看香蕉| 北辰区| 亚洲午夜福利在线观看| 潍坊市| 狠狠干狠狠爱| 敦化市| 无码精品人妻一区二区三区湄公河| 国产成人无码一区二区在线观看| 东台市| 国产精品久久久久久久久动漫| 大竹县| 久久久精品中文字幕麻豆发布 | 荥阳市| 岢岚县| 无码少妇精品一区二区免费动态| 两口子交换真实刺激高潮| 万山特区| 久久久国产精品人人片| 国产精品国产三级国产专区53 | 肃北| 亚洲日韩精品一区二区三区| 邵阳市| xx性欧美肥妇精品久久久久久| 国产草草影院ccyycom| 熟妇人妻中文字幕无码老熟妇| 国产精品亚洲一区二区无码| 乐亭县| 麟游县| 午夜时刻免费入口| 国产农村妇女精品一二区| 尤物视频网站| 欧美成人片在线观看| 日韩无码电影| 精品人妻午夜一区二区三区四区| 欧美人与性囗牲恔配| 若尔盖县| 苍梧县| 民丰县| 国产精品美女久久久久久久久| 临夏县| 成人做受黄大片| 毛片无码一区二区三区a片视频| 亚洲欧美在线观看| 亚洲日韩精品一区二区三区| 嫩草av久久伊人妇女超级a| 久久久久麻豆v国产精华液好用吗| 久久久成人毛片无码| 庆元县| 国产综合内射日韩久| 铁岭市| 成全影视大全在线看| 日本特黄特色aaa大片免费| 上犹县| 亚洲视频一区| 国产精品午夜福利视频234区| 伊春市| 久久精品噜噜噜成人| 久久国产成人精品av| 色妞色视频一区二区三区四区| 66亚洲一卡2卡新区成片发布 | 欧美不卡一区二区三区| 久久久精品免费| 88国产精品视频一区二区三区| 三年片免费观看了| 国产精品久久久久久久免费看| 亚洲欧美精品aaaaaa片| 又大又长粗又爽又黄少妇视频 | 珲春市| 国产精品久久久久野外| 国产免费视频| 静海县| 梧州市| 久久久久久久久毛片无码| 99久久99久久精品免费看蜜桃| 成人无码视频| 国精产品一二三区精华液| 国产精品999| 艳妇臀荡乳欲伦交换在线播放| 妺妺窝人体色www在线下载| 未满十八18禁止免费无码网站| 龙江县| 泰和县| 和顺县| 光泽县| 郯城县| 惠安县| 极品新婚夜少妇真紧| 欧美激情性做爰免费视频| 沈丘县| 双辽市| 国产伦精品一品二品三品哪个好| 污污污www精品国产网站| 永久免费无码av网站在线观看| 三年片在线观看免费观看大全动漫 | 久久久久久久久久久国产| 东兰县| 国产麻豆成人传媒免费观看| 璧山县| 国产精成人品| 无码gogo大胆啪啪艺术| 国产伦精品一区二区三区妓女| 报价| 日产精品久久久一区二区| 精品国产成人亚洲午夜福利| 日韩人妻无码一区二区三区99| 人妻在客厅被c的呻吟| 99这里只有精品| 中字幕一区二区三区乱码| 人妻夜夜爽天天爽三区麻豆av网站 | 少妇人妻偷人精品一区二区| 亚洲午夜福利在线观看| 精品国产一区二区三区四区| 99久久久精品免费观看国产| 久久久久久欧美精品se一二三四| 国产精品久久777777| 永寿县| 国产suv精品一区二区| 亚洲精品一区二区三区新线路| 国产精品一区二区av| 国产探花在线精品一区二区| 无码成人精品区在线观看| 昌乐县| 浏阳市| 勐海县| 江津市| 鹤岗市| 卢龙县| 国产精品久久久久无码av | 国产精品51麻豆cm传媒| 勃利县| 亚洲日韩精品一区二区三区| 国产成人无码www免费视频播放| 和平区| 性一交一乱一乱一视频| 特黄三级又爽又粗又大| 高唐县| 全部孕妇毛片丰满孕妇孕交|