鉅大鋰電 | 點擊量:0次 | 2019年10月09日
神奇的“樹葉”會發電:奧地利科學塔用上浙江新型太陽能電池
在奧地利第二大城市格拉茨,新落成的地標建筑——科學塔的頂部裝設了1000平方米新型太陽能電池。這座60米高的大樓由此完全實現能源自給,日前還登上了國際著名學術期刊《焦耳》的封面。據悉,這些電池核心元件的研發者來自浙江大學。
這種新型太陽能電池模擬綠色植物的光合作用,被稱為染料敏化太陽能電池。它利用人工合成的有機化學材料,最終把太陽能轉化為電能。染料敏化太陽能電池的結構就像一片樹葉。制備時,先將一種半導體材料電子印刷在一片光學玻璃上,這就是“葉片”。隨后將“葉片”浸泡在染料敏化劑中,直到染料完成吸附,“葉片”中就有了最關鍵的“葉綠素”——能夠吸收光子,實現光電轉化。
其主要優勢是:原材料豐富、成本低、工藝技術相對簡單,在大面積工業化生產中具有較大的優勢,同時所有原材料和生產工藝都是無毒、無污染的,部分材料可以得到充分的回收,對保護人類環境具有重要的意義。自從1991年瑞士洛桑高工(EPFL)M.Gratzel教授領導的研究小組在該技術上取得突破以來,歐、美、日等發達國家投入大量資金研發。
染料敏化太陽能電池-結構組成
主要由納米多孔半導體薄膜、染料敏化劑、氧化還原電解質、對電極和導電基底等幾部分組成。納米多孔半導體薄膜通常為金屬氧化物(TiO2、SnO2、ZnO等),聚集在有透明導電膜的玻璃板上作為DSC的負極。對電極作為還原催化劑,通常在帶有透明導電膜的玻璃上鍍上鉑。敏化染料吸附在納米多孔二氧化鈦膜面上。正負極間填充的是含有氧化還原電對的電解質,最常用的是KCl(氯化鉀)。
(1)染料分子受太陽光照射后由基態躍遷至激發態
(2)處于激發態的染料分子將電子注入到半導體的導帶中;電子擴散至導電基底,后流入外電路中;
(3)處于氧化態的染料被還原態的電解質還原再生;
(4)氧化態的電解質在對電極接受電子后被還原,從而完成一個循環;
研究結果表明:只有非常靠近TiO2表面的敏化劑分子才能順利把電子注入到TiO2導帶中去,多層敏化劑的吸附反而會阻礙電子運輸;染料色激發態壽命很短,必須與電極緊密結合,最好能化學吸附到電極上;染料分子的光譜響應范圍和量子產率是影響DSC的光子俘獲量的關鍵因素。到目前為止,電子在染料敏化二氧化鈦納米晶電極中的傳輸機理還不十分清楚,有Weller等的隧穿機理、Lindquist等的擴散模型等,有待于進一步研究。
浙大化學系教授王鵬領銜的課題組與染料敏化原理太陽能電池的發明者、瑞士聯邦理工學院教授格蘭澤爾團隊合作,開發出新的材料,增強電池吸收轉化太陽能的能力,使這種電池的能量轉換效率首次達到10%。這種新型太陽能電池在長期光熱老化測試中表現出良好的穩定性,可在室外工作10到20年。
相比傳統的硅晶體太陽能電池,染料敏化太陽能電池具有諸多優勢。它制備成本低,無化學污染,且可制成多種顏色,能直接用作建筑的玻璃幕墻、屋頂或窗戶等,實現光伏建筑一體化。此外,它的弱光效應好,雖能量轉換效率略低于硅晶體太陽能電池,但每天工作時間可以超過8小時,比硅晶體太陽能電池多出一倍。
目前,該成果已實現產業化。浙大科研團隊目前與瑞士光伏企業合作,產品應用于瑞士科技會展中心等建筑。王鵬說,歐盟已提出到2025年新建建筑物能耗自供應能力占到25%,代表了市場發展趨勢,染料敏化太陽能電池的發展前景看好。










